Modelo matemático de un secadero rotatorio: secado de biomasa sólida lignocelulósica

  • R. I. Ponce De La Cruz Instituto de Ingeniería, Universidad Veracruzana
  • F. J. Royo Departamento de Ingeniería Mecánica, Universidad de Zaragoza
  • A. C. García Reynoso Instituto de Ingeniería, Universidad Veracruzana
Palabras clave: secadero rotario, energía renovable, biomasa, modelo matemático, validación

Resumen

El secado de biomasa es indispensable para su aprovechamiento energético, y por lo tanto, es importante mejorar la eficiencia de los secaderos rotatorios, para poder competir con los combustibles fósiles. En este artículo se describe un modelo matemático general para secaderos rotarios directos continuos de cascadas con la configuración de flujo paralelo para el secado de biomasa sólida lignocelulósica. El modelo desarrollado es versátil y flexible, porque permite modificar diferentes parámetros, como: las propiedades de la biomasa a secar, las condiciones de operación, las características del secadero (dimensiones, inclinación del cilindro, el número y perfil de los deflectores periféricos y centrales).Con la finalidad de evaluar la capacidad de predicción del modelo, se presenta su validación con las mediciones obtenidas de diversas pruebas experimentales realizadas en un secadero industrial. Las predicciones del modelo son capaces de reproducir con precisión los datos experimentales, obteniéndose valores
bajos de la raíz del error cuadrático medio porcentual: 7.62% para el contenido de humedad, 1.79% para la temperatura de las partículas de biomasa y 1.71% para la temperatura del agente de secado a la salida del equipo. Por lo tanto, este modelo es una herramienta útil para el diseño del secadero, la optimización del proceso de secado, y reducir su consumo energético del equipo.

Citas

Moyers, C. G., Baldwin G. W. Psychrometry, Evaporative Cooling and Solids Drying, In Perry’s chemical engineers’ handbook: Perry, R. H., Green, D. W. y Maloney, J. O. Eds. McGraw Hill, pp 12.52-12.56, 1999.

Iguaz, A. Modelización, simulación y control del proceso de deshidratación de vegetales troceados en un secadero rotatorio. Universidad Pública de Navarra, 2002.

Duchesne, C., Thibault, J. Bazin C. Modeling of the solids transportation within an industrial rotary dryer: a simple model. Ind. Eng. Chem. Res. 35 (7), pp. 2334-2341, 1996.

Duchesne, C., Thibault, J. Bazin C. Modelling and dynamicsimulation of an industrial rotary dryer. Dev. Chem. Eng. Mineral Process. 5 (3-4), pp. 155-182, 1997.

Verman M., Loha C., Sinha A. N., Chatterje P. K., Drying of biomass for utilizing in co-firing with coal and its impact on environment – A review. Renewable and sustainable energy reviews, 71, pp. 732-741, 2017.

Savaresi, S. M., Bitmead, R. R., Peirce, R. On modeling and control of a rotary sugar dryer. Control engineering practice, 9, pp 249-266, 2001.

Fernandes, N. J., Ataíde C. H. Barrozo M. A. S. Modeling and experimental study of hydrodynamic and drying characteristics of an industrial rotary dryer. Brazilian Journal of Chemical Engineering, 26 (2) pp. 331-341, 2009.

Abbasfard H., Ghader S., Hashemipour H., Ghanbari, M. Mathematical modeling and simulation of drying using two industrial concurrent and counter rotary dryers for ammonium nitrate. Drying Technology, 31, pp. 1297-1306, 2013.

Krokida, M., Marinos-Kouris, D. and Mujumdar A. S. Rotary Drying, In Handbook of Industrial Drying; Mujumdar, A. S. Eds. Taylor & Francis: Philadelphia, pp. 151-171, 2007.

Mani, S. A systems analysis of biomass densification process. The University of British Columbia, 2005.

Xu Q., Pang, S. Mathematical modeling of rotary drying of wood biomass. Drying Technology, 26, 1344-1350, 2008.

Chun Y. N. M., Lim M. S., Yoshikawa K. Development of a high-efficiency rotary dryer for sewage sludge. Journal of material cycles and waste management, 14 (1), pp. 65-73, 2012.

Kirk, R. W., Wilson, J. B. Rotary drying of wood waste fuels with boiler exhaust gases: Simulation, field studies, economics. Forest Products Journal, 36 (7 y 8), pp. 57-61, 1986.

Amos W. A. Report on Biomass Drying Technology. National Renewable Energy Laboratory, NREL/TP-570-25885, pp. 1-29, 1998.

Bruce, D. M., Sinclair, M. S. Thermal Drying of Wet Fuels: Opportunities and Technology, H. A. Simons, LTD, prepared for Imatran Voima Oy, Finland and Electric Power Research Institute (EPRI). TR-107109, 1996.

Brammer, J. G., Bridgwater, A. V. The influence of feedstock drying on the performance and economics of a biomass gasifier-engine CHP system, Biomass and Bioenergy, (20), pp. 271-281, 2002.

Zabaniotou, A. A. Simulation of forestry biomass drying in a rotary drying. Drying Technology, Vol. 18, No. 7, Págs. 1415-131, 2000.

Ståhl, M., Granström, K., Berghel, J., Renström, R. Industrial processes for biomass drying and their effects on the quality properties of wood pellets, Biomass and Bioenergy. 27, pp. 621-283, 2004.

Nonhebel, G., Moss, A. A. H. Drying of Solids in the Chemical Industry. Butterworth & Co Ltd.; London, 1971.

Chang, E. C. Optimum lifter design for rotary dryer and coolers. Chemical Industry and Technology, 8 (1), pp 48-52, 1990.

Driver, J. Experimental study of the effect of lifter design on mass transfer in rotary drum driers. The University of Queensland, 1999.

Driver, J., Hardin, M. T., Howes, T., Palmer, G. Effect of lifter design on drying performance in rotary dryers. Drying Technology, 21 (2), pp. 369-381, 2003.

Muyklestad Ole. Heat and mass transfer in rotary. Chemical Engineering Progress Symposium Series. 59 (41), pp. 129-137, 1963.

Sharples, K., Glikin P. G., y Warne, R. Computer simulation of rotary driers. Trans. Instn. Chem. Engrs. 42, pp. T275-T284, 1964.

Thorpe, G. R. The mathematical model for the rotary drier. Ph. D. Thesis. University of Nottingham, 1972.

Deich, V. D., Stail’ski, V. V. Optimum control of drying processes in a rotary drum driers. Theoretical Foundation of Chemical Engineering. 9, pp. 85-90, 1975.

Gauthier, A. Simulation et optimisation technico-économique du séchage des fourrages dans les séchoirs à tambour rotatif. Thèse de Doctor-Ingénieur, 1977.

Kisakürek, B. Calculation of drying time in a revolving dryer (In Turkish). J. thermal science and technology. 1 (3), pp. 29-32, 1978.

Reay, D. Theory in the design of dryers, Chem. Eng. July, pp. 501-506, 1979.

Thorne, B. The Computer Simulation of the Rotary Drying Process, Ph. D. Thesis, University College, Dublin, Irleand, 1979.

Thorne, B. y Kelly, J. J. Mathematical model of rotary dryers. Proc. Drying’80, Hemisphere Publishing, Washington, USA, Editor: Mujumdar A. S., 1, pp. 160-169, 1980.

Yliniem, L., Jutila, E. A. A., Huroneen, P. Modelling and control of a pilot-plant rotary drier used for drying of industrial ore concentrates. IFAC Control Science and Technology (Proc. 8th Triennial World Congress). 22, pp. 198-203, 1981.

Platin, B. E., Erden A., Gülder Ö. L. Modelling and design of rotary dryers. Proceedings of the third International Drying Symposium. 2, pp. 466-477, 1982.

Kamke, F. A. Engineering analysis of a rotary dryer: Drying of wood particles. Ph. D. Thesis, Dept. Forest Prod. Oregon State Univ., Corvallis. 1984.

Brasil, C. G., Seckler M. M. A model for the rotary drying if granular fertilizers. Proceedings of the 6th International Drying Symposium. pp. OP247-OP256, 1988.

Douglas, P. L., Kwade, A., Lee, P. L., Mallick, S. K. Simulation of a rotary dryer for sugar crystalline. Drying Technology. 11 (1), pp. 129-155, 1993.

Wang, F. Y., Cameron, I. T., Lister, J. D., Douglas, P.L. A distributed parameter approach to the dynamics of rotary drying processes. Drying technology. 11 (7), pp. 1641-1656, 1993.

Yliniemi, L., Advanced control of a rotary dryer. Thesis, Department of Process Engineering, University of Oulu, Finland, pp. 1-100, ISBN: 9514252810, 1999.

Cammarata, L. y Yliniemi, L., Development of a self-tuning fuzzy logic controller (STFLC) for a rotary dryer. Iniversity of Oulu, Control engineering laboratory. Department of Process Engineering Report A, (10), pp. 1-35, 1999.

Fratantonio, D., Yliniemi, L. y Leiviskä, K. Fuzzy modelling for a rotary dryer Control Engineering Laboratory, University of Oulu. Report A No. 18, June 2001.

Pirrello, L., Yliniemi, L. Leiviskä, K., Galluzzo, M. Self-tuning fuzzy control of a rotary dryer. 15th Triennal World Congress odf the International Federeation of Automatic Control. pp. 1-6, 2002 a.

Pirrello, L., Yliniemi, L., Leiviskä, K. Development of a fuzzy logic controller for a rotary dryer with self-tuning of scaling factor. University of Oulu, Control Engineering Laboratory. ISBN 951-42-6424-X. pp. 1-32, 2002 b.

Iguaz, A., Esnoz, A, Martínez, G., López, A., Vírseda, P. Mathematical modelling and simulation for the drying process of vegetable wholesale by-products in a rotary dryer. Journal of Engineering. 59, pp. 151-160, 2003.

Luz, G. R., Dos Santos, W. A., Jorge L. M. M., Paraíso P. R., Andrade, C. M. G. Dynamic modeling and control of soybean meal drying in a direct rotary dryer. Food and Bioproducts Processing, 88, pp. 90-98, 2010.

Qin B., Wang Z., Wang X., Zhang W. Dynamic modelling and simulation of zinc concentrate Ore rotary dryer. ieeexplore.ieee.org. 2010.

Castaño, F., Rubio, F. R., Ortega, M. G. Modeling of a cocurrent rotary dryer. Drying technology: an international journal. 30, pp. 839-849, 2012.

Wang X., Qin B., Xu, H. Zhu, W. Rotary drying process modeling and online compensation. Control engineering practice 41, pp. 38-46, 2015.

Gómez, F. J., Casanova, P. J., Palomar, J. M., Cruz, F. Modeling of olive mil waste rotary dryers: Green energy recovery systems. Applied Thermal Engineering. 80, pp. 362-373, 2015.

Hernández, W. N., Hernández, F. J., Vargas, Z., Rodríguez, G. C., García M. A. Coffe grain rotary dryer optimization. Revista mexicana de ingeniería química. 12 (2), pp. 315-325, 2013.

Hosseinabadi, Zerea H., Layeghi, M., Berthold. D., Doosthosseini, K., Shahhosseini S. Mathematical modeling the drying of poplar wood particles in a closed-loop tripoke pass rotary dryer. Drying technology. 32, pp. 55-67, 2014.

Bustamante C. A., Hill, A. F., Rodríguez, D. F., Giraldo, M., Flórez, W. F. Modeling and simulation of a co-current rotary dryer under steady conditions. Drying technology. 32, pp. 469-475, 2014.

Baxi, H. Patel A., Barve, J. Modelling and simulation of dryer system. International conference on industrial instrumentation and control (ICIC). College of ingineering Pune, India. May pp. 28-30, 2015.

Gu Conghui, Zhang, C., Zhang X., Ding, N., Li, B., Yuan, Z. Modeling and simulation of drying characteristics on flexible filamentous particles in rotary dryers. Korean J. Chem. Eng. ISSN: 0256-1115.

Rousselet, Y., Dhir, V. Y. Numerical modeling of a co-current cascading rotary dryer. Food and bioproducts processing. 99, pp. 166-178, 2016.

Zalazar C., Góngora, E., Retirado, Y., Falconí, M. A., Mata, L. F. Modelación matemática del proceso de activación de carbón vegetal en horno cilíndrico rotatorio. ISSN: 1993 8012, Minería y Geología, 32 (2), pp. 140-154, 2016.

Friedman, S. J., Marshall Jr., W. H. Studies in rotary drying part I: hold up and dusting. Chemical Engineering Progress. 45, (8), pp. 482-493, 1949 a.

Ponce De La Cruz, R. I. Modelación matemática de secado forzado de biomasa sólida para su aprovechamiento energético; Tesis Doctoral. Universidad de Zaragoza, España. 2010.

Hirosue, H. y Shinohara, H. Volumetric heat transfer coefficient and pressure drop in rotary dryers and coolers. Proceedings of the first international symposium on drying. McGill University, Montreal, Canada. Editor: Mujumdar, A. S. Science Press, Princeton. 1978.

Baker, C. G. J. Cascading rotary dryers. Advances in drying: Volume 2. In Mujumdar, A. S. (Ed.). Editorial: McGraw Hill University, Montreal. ISBN: 0891162550. pp. 1-51, 1983.

McCabe, W. L. y Smith, J. C. Secado de sólidos. Operaciones Básicas de ingeniería Química. Editorial: Reverté, S. A. ISBN: 8429173609. pp. 977-1006, 1977.

Simpson, W. T. Predicting equilibrium moisture content of Wood by mathematical models. Wood and Fiber. 5 (1), pp. 41-49, 1973.

Simpson, W. T. y Rosen, H. N. Equilibrium moisture content of wood at high temperatures. Wood and Fiber. 13 (3), pp. 150-158, 1981.

Chen, C. S. Equilibrium moisture curves for biological-materials. Transactions of the ASAE. 14 (5), pp. 924-926, 1971.

Lenth, C. A. Wood material behaviour in severe environments. Faculty of the Virginia Polytechnic Institute and State University. Doctor of philosophy in wood science and forest products. 1999.

Simpson, W. T. Equilibrium moisture content of wood in outdoor locations in United States and Worldwide. Forest Products Laboratory. United States Department of Agriculture. Research Note FPL-RN-268. 1998.

Dela Cruz, E. Mechanism of flake drying and its correlation to quality. Ph. D. Thesis in Wood Science and Forest Product. Faculty of Virginia Polytechnic Institute and State University. 2001.

Lewis, W. K. The rate of drying of solids materials. Industrial Engineering chemistry Research. 13, pp. 427-432, 1921.

Rosen, H. N. Functional relations and approximation techniques for characterizing wood drying curves. Wood Science. 15 (1), pp. 49-55, 1982.

Ranz, W. E. y Marshall, W. R. Evaporation from drops. (Part 1 y Part 2). Chemical Engineering Progress. 48 (3), (pp. 141-146 y pp. 173-180), 1952.

Bramhall, G. Mathematical model for lumber drying I. Principles involved. Wood Science. 12 (1), pp. 14-21, 1979a.

Bramhall, G. Mathematical model for lumber drying II. Model. Wood Science. 12 (1), pp. 22-31, 1979b. [72] Montgomery, D. C. Diseño y análisis de experimentos. Editorial: Grupo Editorial Iberoamérica. ISBN: 968-7270-6-8. 1991.

Copetti, J. B., Lorenzo, E. y Chenlo, F. A General Battery Model for PV System Simulation. Progress in Photovoltaics: Research and Applications. 1, pp. 283-292, 1993.

Serret Moreno-Gil, J. Predicción y error de predicción. Procedimientos estadísticos: con Statgraphics. Editorial: Escuela Superior de gestión Comercial y Marketing. ISBN: 84-7356-171-6. pp. 307-309, 1998.

Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. Forest Science. 45 (4), pp. 573-592, 1999.

Walpole, R. E., Myers, R. H., y Myers, S. L. Probabilidad y estadística para ingenieros. Editorial: Pearson Educación. ISBN: 9701702646. 1999.

Murray, R. S., y Larry, J. S. Estadística. Análisis de varianza. Editorial: McGraw-Hill / Interamericana editores, S. A. de C. V. ISBN: 970-10-3271-3. pp. 365-398, 2002.

Devore, J. L. Probabilidad y estadística para ingeniería y ciencias. Editorial: Thomson Learning. ISBN: 970-686-457-1. 2004.

Herrerias, R. y Palacios, F. Curso de inferencia estadística y del modelo lineal simple. El modelo lineal simple normal. Editorial: Delta. ISBN: 978-84-96477-65-0. pp. 171-202, 2007.

Publicado
2019-05-07
Sección
Artículos