Permanent mold filling process modeled by CEL elements

  • Alan Rodrigo Saucedo Osorno Departamento de Manufactura y Materiales de la Facultad de Ingeniería Universidad Nacional Autónoma de México
  • Edgar Isaac Ramírez Díaz Departamento de Manufactura y Materiales de la Facultad de Ingeniería Universidad Nacional Autónoma de México
  • Osvaldo Ruiz Cervantes Departamento de Manufactura y Materiales de la Facultad de Ingeniería Universidad Nacional Autónoma de México
  • Armando Ortiz Prado Departamento de Manufactura y Materiales de la Facultad de Ingeniería Universidad Nacional Autónoma de México
Palabras clave: Mold filling, Fluid-Solid Interaction (FSI), Coupled Eulerian- Lagrangian analysis (CEL), Finite element

Resumen

Simulation of a permanent open mold filling is presented with the aim to analyze the capacities of CEL Abaqus tool. The fluid behavior is defined by Mie-Grüneisen equations, driven only by body forces in order to identify areas with turbulence and relate them with defects in the solidified part. The filling is achieved using the fluid-solid interaction (FSI). Finally, free surface behavior, droplet formation, velocity vector field, volume distribution within the Eulerian mesh were obtained. It is concluded that the analysis CEL can be an alternative tool to the CFD analysis, since it was able to model the multiphysical phenomenon of casting process, being able to relate the regions with turbulence with the defect zones in the solidified ingot.

Citas

B.Q. Li, Solidification Processing of Materials in Magnetic Fields, JOM (Journal of Materials), 50, no. 2, 1998

J. Campbell, Castings, Butterworth-Heinemann, 2nd edition, 2003.

3. M. Fleming, Solidification Processing, Mc-Graw-Hill, New York, 1974.

J. Campbell, M. Holliday, B. Sirrel, Benchmark Testing to solidification modeling the flow of Al castings, JOM (Journal of Materials), 48, pp 20-23, 1996.

H.M. Domanus., Computer Simulation Using CAPS of an Aluminum Plate Casting, Modeling of Casting, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 947-954, 1995.

R.W. Lewis, K. Ravindran, and V. Tran, Finite Element Simulation of the Benchmark Mold Filling Problem, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 955-962, 1995.

C. Rigaut, Round Robin Bench Mark Exercise for Mold Filling and Solidification, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 1007-1014, 1995.

F. Sant and G. Backer, Application of WRAFTS Fluid Flow Modeling Software to the Benchmark Test Casting, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 983-990, 1995.

Z.A. Xu and F. Mampaey, Mold Filling and Solidification Simulation of the Benchmark Casting, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 963-970, 1995.

M.R. Barkhudarov and C.W. Hirt, Casting Simulation: Mold Filling and Solidification—Benchmark Calculations Using FLOW-3D, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 935-946, 1995.

I. Ohnaka and J.D. Zhu, Computer Simulation of Fluid Flow and Heat Transfer of the Benchmark Test by DFDM/3DFLOW, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 971-974, 1995.

M.A. Layton et al., Modeling of Mold Filling and Solidification, Welding and Advanced Solidification Processes VII, ed. M. Cross and J. Campbell Warrendale, PA: TMS, pp. 975-982, 1995.

D. M. Stefanescu (Volume Chair), ASM Metals Handbook: Casting, ASM International ® The Materials Information Company, Vol 15, 9th edition, 1992.

R. Avila, Numerical simulation of phase change problems (freezing-melting) with natural convection, Ingeniería Mecánica Tecnología y Desarrollo, Vol. 1, No. 4, 2004.

L. Fan, D. Peiran, S. Steve, Coupled Fluid/Structure Interaction Simulation Using Abaqus CEL, Dassault Systemes Simulia Corp, 2009.

J. Tippmann, S. Prasad, P. Shah, 2-D Tank Sloshing Using the Coupled Eulerian-Lagrangian (CEL) Capability of ABAQUS ® / Explicit, Dassault Systemes Simulia Corp, 2009.

X. Latorre, P. Marijuan, J. Viñas, Road Restraint Systems in ABAQUS ®, IDIADA Automotive Technology SA, 2012.

M. Ahmadzadeh, B. Saranjam, A. Hosseini-Fard, AR. Binesh, Numerical simulation of sphere water entry problem using Eulerian-Lagrangian method, Applied Mathematical Modelling, 38 (5-6): 1673-1684 (2014).

R. Martínez, Comportamiento Macro y Micro Mecánico de aleaciones con memoria de forma del tipo Cu-Al-Ni con manganeso y niobio bajo tensión uniaxial, Tesis, Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México, 2012.

Simulia ABAQUS® 6.12, Eulerian analysis of a collapsing water column, ABAQUS® Benchmarks Manual, Section 1.7.1, 2012.

Simulia ABAQUS® 6.12, Specifying frictional behavior for contact mechanical property options, Abaqus ®/CAE User's Manual Section 15.14.1, 2012.

Simulia Abaqus Technology Brief, Water Landing of Space Flight Re-entry Vehicles Using Abaqus / Explicit, TB-11-SD-1, 2011

A. Saucedo, Simulación de la colada gravitacional mediante paquetería de elemento finito, Tesis, Facultad de Ingeniería, Universidad Nacional Autónoma de México, 2013.

Publicado
2019-04-30
Sección
Artículos