Changes in Lattice parameter in Aluminium cast Alloys due to aging
Resumen
Aluminium alloys are widely used due to their combination of low weight and high strength resulting from heat treating, which takes place by heating-up the material at temperatures high enough for the alloying elements to dissolve into the aluminium matrix; the material is then cooled-down to room temperature at a rate fast enough for the alloying elements to remain in solution; strengthening occurs by aging, in which particles of different size, shape and nature precipitate from the supersaturated matrix promoting changes in the lattice parameter of the aluminium. X-ray diffraction analyses were conducted in different aluminium cast alloys after aging them at different temperatures for up to 100 hours, revealing that changes in the value of the lattice parameter of the aluminium matrix depends on the alloying elements. Aluminium-copper alloys have the tendency to increase the parameter due to precipitation of Al2Cu particles, whereas those that harden by precipitation of Mg2Si are affected to a lesser degree.Citas
J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, (New York, 1989).
P.M. Norris, M.C. Hastings and W.J. Wepfer, An experimental investigation of liquid coolant heat transfer in a diesel engine, J. Exp. Heat Trans., 7 (1994) 43-51.
K. Hoag, Vehicular engine design, Springer Science & Business Media (Wien, New York, 2007).
R.B. Gundlach, B. Ross, A. Hetke, S. Valtierra, and J.F. Mojica, Thermal fatigue resistance of hypoeutectic aluminum-silicon castings, Trans. AFS, 104 (1994) 205-211.
E. Velasco, R. Colas, S. Valtierra and J.F. Mojica, A model for thermal fatigue in an aluminium casting alloy. International journal of fatigue, 17 (1995) 399-406.
E.L. Rooy, Aluminum and aluminum alloys, in ASM Handbook, Vol. 15: Casting, ASM International, (Materials Park, 1988), 743-770.
N.J. Kim, Designing with aluminum alloys in G.E. Totten, L. Xie and K. Funatani (Eds.): Handbook of Mechanical Alloy Design, M. Dekker Inc., (New York, 2004), 441-486.
I.J. Polmear, Light Alloys, Metallurgy of the Light Metals, Arnold (London, 1980).
L. Bäckerud, G. Chai and J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys, AFS/Skanaluminium, (Des Plains, 1990).
L. Arnbert, L. Bäckerud and G. Chai, Solidification Characteristics of Aluminum Alloys, Vol. 3: Dendritic Coherency, AFS, (Des Plains, 1996).
M.A. Talamantes-Silva, A. Rodríguez, J. Talamantes-Silva, S. Valtierra and R. Colás, Effect of solidification rate and heat treating on the microstructure and tensile behavior of an aluminum-copper alloy, Metall. Mat. Trans. B, 39B, (2008) 911-919.
F.J. Tavitas-Moreno, J.E. Gurzleski, F.H. Samuel, S. Valtierra and H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging’, Mat. Sc. Eng. A, A480 (2008) 356-368.
A.M. Samuel, J. Gauthier and F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in AI-Si alloys during solution heat treatment, Metall. Mat. Trans. A, 27A (1996) 1785-1798.
H.Y. Hunsicker, Dimensional changes in heat treating aluminium alloys, Metall. Trans. A, 11A (1980) 759- 773.
C.R. Houska, X-ray scattering from systems in early stages of precipitation, Acta Cryst A., 49 (1993) 771-81.
J.L. Cavazos and R. Colás, Quench sensitivity of a heat treatable aluminum alloy, Mat. Sc. Eng. A, A363 (2003) 171-178.
O. Novelo-Peralta, G. González, G.A. Lara-Rodríguez, Characterization of precipitation in Al-Mg-Cu alloys by X-ray diffraction peak broadening analysis’, Mat. Char. 59 (2008) 773-780.
E. Carrera, J.A. González, J. Talamantes-Silva and R. Colás, Effect of the delay in time between cooling and aging in heat-treated cast aluminum alloys', Metall. Mat. Trans. B, 42B (2011) 1023-1030.
V. Páramo, R. Colás, E. Velasco and S. Valtierra, Spheroidization of the Al-Si eutectic in a cast aluminum alloy, J. Mat. Eng. Perf., 9 (2000) 616-622.
H. Lu, P. Kadolkar, K. Nakazawa, T. Ando, and C.A. Blue, Precipitation behavior of AA2618 Metall. Mat. Trans. A, 38A (2007) 2379-2388.
A. Hayounea and D. Hamanab, Structural evolution during non-isothermal ageing of a dilute Al–Cu alloy by dilatometric analysis, J. Alloys Comp., 474 (2009) 118-123.
G.A. Edwards, K. Stiller, G.L. Dunlop and M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mat., 46, (1998) 3893-3904.
D. Ovono Ovono, L. Guillot and D. Massinon, The microstructure and precipitation kinetics of a cast aluminium alloy, Scr. Mater., 55 (2006) 259-262.
B. Rashkova, M. Faller, R. Pippan and G. Dehma, Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al–3wt.%Cu alloy, J. Alloy Comp., 600 (2014) 43-60.
P. Ouellet, F.H. Samuel, D. Gloria and S. Valtierra, Effect of Mg content on the dimensional stability and tensile properties of heat treated Al-Si-Cu (319) type alloys, Int. J. Cast Met. Res., 10 (1997) 67-78.
D. Gloria, F. Hernandez and S. Valtierra, Dimensional changes during heat treating of an automotive 319 alloy, Heat Treating: Proc. 20th Conf., K. Funatani and G.E. Totten (Eds.), ASM Heat Treating Society, (Materials Park, OH, 2000) 674-679.
J.M. Boileau, C.A. Cloutier, L.A. Godlewski, P.A. Reeber-Symanski, C. Wolverton and J.E. Allison, The Dimensional Stability of Cast 319 Aluminum, SAE Techn. Paper 2003-01-0822, 2003.
A. Lombardi, D. Sediako, C. Ravindran and R. Mac-Kay, In situ neutron diffraction analysis of stress-free d-spacing during solution heat treatment of modified 319 Al alloy engine blocks, Can. Metall. Quart., 54 (2015) 30-37.