Effect of different building materials on conjugate heat and mass transfer

  • M. Gijón-Riveraa Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias
  • J. Serrano Arellano División de Arquitectura e Ingeniería en Energías Renovables, Instituto Tecnológico Superior de Huichapan-ITESHU-TecNM
  • J. Xamán Centro Nacional de Investigación y Desarrollo Tecnológico. CENIDET-TecNM
  • G. Álvarez Centro Nacional de Investigación y Desarrollo Tecnológico. CENIDET-TecNM
Palabras clave: Conducción de calor, convección natural turbulenta, transferencia de masa, radiación térmica superficial, cavidad cuadrada

Resumen

En este artículo se presenta un estudio numérico del efecto de la conducción de calor de diferentes materiales de construcción sobre la transferencia de calor y masa en una cavidad rectangular. El aire al interior de la cavidad se encuentra contaminado con CO2. Las ecuaciones de conservación de masa, momentum, energía, especies y el modelo de turbulencia k-ε fueron resueltas usando la técnica de volumen finito. El caso A (bloque de adobe) fue la configuración óptima desde el punto de vista del confort térmico. En general, el caso B (ladrillo rojo) fue la mejor opción desde el punto de vista de la calidad del aire interior con una diferencia de 200 ppm con respecto a otros materiales de construcción y para todos los números de Rayleigh analizados.

Citas

D. Larson, R. Viskanta, Transient combined laminar free convection and radiation in a rectangular enclosure, Journal of Fluid Mechanics, 68 (1976) 65–85.

B. Webb, R. Viskanta, Radiation-induced buoyancy-driven flow in rectangular enclosures: experiment and analysis, Journal of Heat Transfer, 109 (1987) 427–433.

M. Behnia, J. Rizes, G. De Vahl Davis, Combined radiation and natural convection in a cavity with a transparent wall and containing a non-participant fluid. International Journal for Numerical Methods in Fluids, 10 (1990) 305–325.

S. Kwon, Y. Kwon, J. Park, Numerical study of combined natural convection and radiation in a rectangular enclosure with a transparent window on the center region of right wall, Proceedings of 6th International Symposium on Transport Phenomena in Thermal Engineering, Seoul Korea, 1993, pp. 299–304.

G. Álvarez, C. Estrada, Numerical heat transfer in a cavity with a solar control coating deposited to a vertical semitransparent wall, International Journal for Numerical Methods in Fluids, 34 (2000) 585–607.

F.Y. Zhao, D. Liu, G.F Tang, Conjugate heat transfer in square enclosures, Heat Mass Transfer, 43 (2007) 907–922.

J. Xamán, G. Álvarez, Effect of heat conduction of SnS–CuxS solar control coated semitransparent wall on turbulent natural convection in a square cavity, Numerical Heat Transfer Part A, 50 (2006),79–98.

J. Xamán, J. Arce, G. Álvarez, Y. Chávez, Laminar and turbulent natural convection combined with surface thermal radiation in a square cavity with a glass wall. International Journal of Thermal Sciences, 47 (2008), 1630–1638.

J. Xamán, G. Álvarez, J.F. Hinojosa, J.J. Flores, Conjugate turbulent heat transfer in a cavity with a solar control coating deposited to a vertical semitransparent wall, International Journal of Heat Fluid Flow, 30 (2009), 237-248.

J. Xamán, G. Mejía, G. Álvarez, Y. Chávez, Analysis on the heat transfer in a square cavity with a semitransparent wall: Effect of the roof materials, International Journal of Thermal Sciences, 49 (2010), 1920-1932.

G.V. Kuznetsov, M.A. Sheremet, Conjugate heat transfer in an enclosure under the condition of internal mass transfer and in the presence of the local heat source, International Journal of Heat and Mass Transfer, 52 (2009), 1-8.

G.V. Kuznetsov, M.A. Sheremet, Conjugate natural convection with radiation in an enclosure, International Journal of Heat and Mass Transfer, 52 (2009), 2215-2223.

G.V. Kuznetsov, M.A. Sheremet, Numerical simulation of turbulent natural convection in a rectangular enclosure having finite thickness walls, International Journal of Heat and Mass Transfer, 53 (2010), 163-177.

G.V. Kuznetsov, M.A. Sheremet, Conjugate natural convection in a closed domain containing a heat-releasing element with a constant heat-releasing intensity, Journal of Applied Mechanics in Technical Physics, 51 (2010), 699-712.

G.V. Kuznetsov, M.A. Sheremet, Numerical simulation of convective heat transfer modes in a rectangular area with a heat source and conductive walls, Journal of Heat Transfer, 132-8 (2010), 941-951.

G.V. Kuznetsov, M.A. Sheremet, Conjugate natural convection in an enclosure with a heat source of constant heat transfer rate, International Journal of Heat and Mass Transfer, 54 (2011) 260-268.

G.V. Kuznetsov, M.A. Sheremet, A numerical simulation of double-diffusive conjugate natural convection in an enclosure, International Journal of Thermal Sciences, 50 (2011), 1878-1886.

G.V. Kuznetsov, M.A. Sheremet, Conjugate natural convection combined with surface thermal radiation in a three dimensional enclosure with a heat source, International Journal of Heat and Mass Transfer, 73 (2014), 340-353.

M. Gijón-Rivera, J. Xamán, G. Álvarez, J. Serrano-Arellano J, Coupling CFD-BES simulation of a glazed office with different types of windows in Mexico City, Building and Environment, 68 (2013) 22-34.

J. Serrano-Arellano, M. Gijón-Rivera, Conjugate heat and mass transfer by natural convection in a square cavity filled with a mixture of CO2, International Journal of Heat and Mass Transfer, 70 (2014) 103-113.

Instituto Nacional de Estadística, Geografía e Informática, (2010) Censo de población y vivienda: Principales características de las viviendas, retrieved April 1st, 2015 from, http://www.inegi.org.mx/.

Instituto nacional de estadística e informática, (2012) Encuesta nacional de hogares, retrieved April 1st 2015 from, http://www.inei.gob.pe/.

C. Reid, J.M. Prausnitz, B.E Poling, The properties of gases and liquids, Mc Graw Hill, 1987.

R.A. Henkes, F. Van Der Vlugt, C.J. Hoogendoorn, Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models, International Journal of Heat and Mass Transfer, 34 (1991) 377-388.

F. Modest, Radiative Heat Transfer, Elsevier Academic Press, New York, 2003.

R. Siegel, J. Howell, Thermal radiation heat transfer, Taylor and Francis, New York, 1981.

S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington, 1980.

J. Van Doormaal, G. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flow, Numerical Heat Transfer, 7 (1984) 147-163.

C. Béghein, F. Haghighat, F. Allard, Numerical study of double-diffusive natural convection in a square cavity, International Journal of Heat and Mass Transfer 45 (1992) 883-846.

R.A. Henkes, C.J. Hoogendoorn, Comparison exercise for computations of turbulent natural convection in enclosures, Numerical Heat Transfer, 28 (1995) 59-78.

F. Ampofo, T. G. Karayiannis, Experimental Benchmark Data for Turbulent Natural Convection in Air Filled Square Cavity, International Journal of Heat and Mass Transfer, 46 (2003) 3551-3572.

K. Velusamy, T. Sundarara, K.N. Seetharamu, Interaction effects between surface thermal radiation and turbulent natural convection in square and rectangular enclosures, Journal of Heat Transfer, 123 (2001) 1062-1070.

Publicado
2018-03-16
Sección
Artículos