Vanadium carbide coatings produced on gray cast iron using the thermo-reactive deposition/diffusion technique

  • Ariel Augusto Amaya Avila Department of Mechanical and Mechatronic Engineering, Faculty of Engineering Universidad Nacional de Colombia
  • Oscar Edwin Piamba Tulcan Department of Mechanical and Mechatronic Engineering, Faculty of Engineering Universidad Nacional de Colombia
  • Jhon Jairo Olaya Florez Department of Mechanical and Mechatronic Engineering, Faculty of Engineering Universidad Nacional de Colombia
Palabras clave: Carburo de Vanadio, corrosión, fundición, recubrimiento

Resumen

Recubrimientos duros de Carburo de Vanadio (VC) fueron producidos sobre fundición de hierro gris (GCI) con matriz perlítica, grafitos laminares distribuidos aleatoriamente y 3,5% de carbono total. El proceso se realizó en un baño de sales de bórax, fundido a temperaturas de 1173 K, 1223 K y 1273 K, para 2, 4 y 6 horas. Se usó ferro Vanadio como elemento formador de los carburos y aluminio como agente reductor. A partir de la Teoría Cinética Clásica se determinaron los parámetros de crecimiento de capa.
Los recubrimientos obtenidos se caracterizaron por microscopia electrónica de barrido (SEM), espectroscopia de electrones Auger (AES) y difracción de rayos X (DRX). En general se logró producir un recubrimiento de morfología compacta, continua, homogénea y de una interface lisa. A partir de DRX se observó la fase FCC del VC con una orientación mixta en los planos (111) y (200). A partir de AES se verificó la presencia de Vanadio a 437 eV y carbono a 272 eV. Finalmente se encontró mediante técnicas electroquímicas de polarización potenciodinámica en solución de NaCl al 3%, la resistencia a la corrosión del sistema VC-fundición gris presento mejor comportamiento con respecto al sustrato.

Citas

J. Apráiz Barreiro, Fundiciones. Madrid: Limusa/Noriega; Dossat, 1998.

A04 Committee, “Specification for Gray Iron Castings,”2012.

A. S. M. A. Haseeb, M. A. Fazal, M. I. Jahirul, and H. Masjuki, “Compatibility of automotive materials in biodiesel: A review,” Fuel, vol. 90, no. 3, pp. 922–931, Mar. 2011.

T. Arai, “Thermoreactive deposition/diffusion process,” ASM Handbook, vol. 4. pp. 448–453, 1991.

F. A. P. Fernandes and S. C. Heck, “DIFFUSION TREATMENTS,” no. September, pp. 49–52, 2009.

T. Arai, G. Baker, and C. Bates, ASM Handbook, Vol. 4: Heat Treating. ASM International, 1991.

C. K. N. Oliveira, R. M. M. Riofano, and L. C. Casteletti, “Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels,” Surf. Coatings Technol., vol. 200, no. 16–17, pp. 5140–5144, Apr. 2006.

T. Arai, H. Fujita, Y. Sugimoto, and Y. Ohta, “Vanadium Carbonitride Coating by Immersing into LowTemperature Salt Bath,” Heat Treat. Surf. Eng., pp. 49–53, 1988.

Y. L. Su and S. H. Yao, “On the performance and application of CrN coating,” Wear, vol. 205, no. 1–2, pp. 112–119, Apr. 1997.

J. L. He, Y. H. Lin, and K. C. Chen, “Wear performance of CAP-titanium nitride-coated high-speed steel in different dry sliding conditions,” Wear, vol. 208, no. 1–2, pp. 36–41, 1997.

S. C. Lim, C. Y. H. Lim, and K. S. Lee, “The effects of machining conditions on the flank wear of tin-coated high speed steel tool inserts,” Wear, vol. 181–183, pp. 901–912, Mar. 1995.

C. K. N. Oliveira, C. L. Benassi, and L. C. Casteletti, “Evaluation of hard coatings obtained on AISI D2 steel by thermo-reactive deposition treatment,” Surf. Coatings Technol., vol. 201, no. 3–4, pp. 1880–1885, Oct. 2006.

C.-Y. Wei and F.-S. Chen, “Characterization on multi-layer fabricated by TRD and plasma nitriding,” Mater. Chem. Phys., vol. 90, no. 1, pp. 178–184, Mar. 2005.

S. Sen and U. Sen, “Sliding wear behavior of niobium carbide coated AISI 1040 steel,” Wear, vol. 264, no. 3–4, pp. 219–225, Feb. 2008.

S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coatings Technol., vol. 191, no. 2–3, pp. 274–285, Feb. 2005.

D. Rast, K. Plasti, N. A. Povr, I. N. I. Jekla, B. Matijevi, and M. Stupni, “THE DIFFUSION GROWTH OF CARBIDE LAYERS ON STEEL SURFACES,” vol. 34, no. 6, pp. 425–428, 2000.

X. S. Fan, Z. G. Yang, C. Zhang, Y. D. Zhang, and H. Q. Che, “Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique,” Surf. Coatings Technol., vol. 205, no. 2, pp. 641–646, Oct. 2010.

X. S. Fan, Z. G. Yang, Z. X. Xia, C. Zhang, and H. Q. Che, “The microstructure evolution of VC coatings on AISI H13 and 9Cr18 steel by thermo-reactive deposition process,” J. Alloys Compd., vol. 505, no. 1, pp. L15–L18, Aug. 2010.

H. Tavakoli and S. M. Mousavi Khoie, “An electrochemical study of the corrosion resistance of boride coating obtained by thermo-reactive diffusion,” Mater. Chem. Phys., vol. 124, no. 2–3, pp. 1134–1138, Dec. 2010.

T. Arai and N. Komatsu, “Carbide Coating Process by Use of Salt Bath and its Application to Metal Forming Dies,” Proc. 18th Int. Mach. Tool Des. Res. Conf., pp. 225–231, 1977.

U. Sen, “Friction and wear properties of thermo-reactive diffusion coatings against titanium nitride coated steels,” Mater. Des., vol. 26, no. 2, pp. 167–174, Apr. 2005.

C. A. Environments, “Standard Practice for Preparing, Cleaning , and Evaluating Corrosion Test,” vol. 03, no. Reapproved 2011, pp. 1–9, 2012.

F. E. Nieto Castillejo, “Recubrimientos de Carburos Ternarios Depositados con la Técnica TRD.,” Tesis de doctorado, Universidad Nacional de Colombia, 2013.

E04 Committee, “Practice for Microetching Metals and Alloys,” 2007.

C. K. N. Oliveira, R. M. Muñoz Riofano, and L. C. Casteletti, “Formation of carbide layers on AISI H13 and D2 steels by treatment in molten borax containing dissolved both Fe–Nb and Fe–Ti powders,” Mater. Lett., vol. 59, no. 14–15, pp. 1719–1722, Jun. 2005.

T. Arai, H. Fujita, Y. Sugimoto, and Y. Ohta, “Diffusion carbide coatings formed in molten borax systems,” J. Mater. Eng., vol. 9, no. 2, pp. 183–189, Jun. 1987.

K. D. Childs and C. L. Hedberg, Handbook of Auger electron spectroscopy: a book of reference data for identification and interpretation in Auger electron spectroscopy. Eden Prairie, Minn.: Physical Electronics Inc., 1995.

M. Aghaie-Khafri and F. Fazlalipour, “Kinetics of V(N,C) coating produced by a duplex surface treatment,” Surf. Coatings Technol., vol. 202, no. 17, pp. 4107–4113, May 2008.

Z. J. Shan, Z. G. Pang, F. Q. Luo, and F. D. Wei, “Kinetics of V(N,C) and Nb(N,C) coatings produced by V–Nb–RE deposition technique,” Surf. Coatings Technol., vol. 206, no. 19–20, pp. 4322–4327, May 2012.

F. A. Orjuela G, “Resistenca a la corrosión en recubrimientos de carburo de vanadio y niobio depositados con la técncia de TRD" Tesis de maestría, Universidad Nacional de Colombia, 2014.

Publicado
2018-03-14
Sección
Artículos