Estudio numérico de la formación de escarcha sobre una placa plana horizontal con flujo paralelo
Resumen
Para predecir el crecimiento de la escarcha y sus propiedades sobre superficies horizontales, en este trabajo se desarrolló un código CFD empleando el método de los volúmenes finitos. Se eligió un modelo matemático que incluye el subdominio del aire húmedo y el subdominio de la capa de escarcha, considerándola como un medio poroso. Las ecuaciones de gobierno se resolvieron en un solo dominio empleando diferentes coeficientes para las ecuaciones discretizadas dependiendo de si el nodo corresponde a escarcha o aire, y utilizando diferentes propiedades termofísicas. Para validar el código numérico se realizó un estudio experimental en el cual se encontró una diferencia relativa en el espesor de la escarcha menor del 10% para el punto central de la superficie en el tiempo final.Citas
. Y Hayashi, A Aoki, S Adachi, and K Hori. Study of frost properties correlating with frost formation types. Journal of heat transfer, 99(2):239–245, 1977.
. Byeongchul Na and Ralph L. Webb. New model for frost growth rate. International Journal of Heat and Mass Transfer, 47(5):925–936, 2004.
. BW Jones and JD Parker. Frost formation with varying environmental parameters. Journal of Heat Transfer, 97(2):255–259, 1975.
. Byeongchul Na and Ralph L. Webb. Mass transfer on and within a frost layer. International Journal of Heat and Mass Transfer, 47(5):899–911, 2004.
. Kwan-Soo Lee, Woo-Seung Kim, and Tae-Hee Lee. A one-dimensional model for frost formation on a cold flat surface. International Journal of Heat and Mass Transfer, 40(18):4359–4365, 1997.
. Kristian Lenic, Anica Trp, and Bernard Frankovic. Transient two-dimensional model of frost formation on a fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer, 52(1 - 2):22–32, 2009.
. J.M. Armengol, C.T. Salinas, J. Xamán, and K.A.R. Ismail. Modeling of frost formation over parallel cold plates considering a two-dimensional growth rate. International Journal of Thermal Sciences, 104:245–256, 2016.
. Dong-Keun Yang, Kwan-Soo Lee, and Dong-Jin Cha. Frost formation on a cold surface under turbulent flow. International Journal of Refrigeration, 29(2):164–169, 2006.
. Kwan-Soo Lee, Sung Jhee, and Dong-Keun Yang. Prediction of the frost formation on a cold flat surface. International Journal of Heat and Mass Transfer, 46(20):3789–3796, 2003.
. Xiaomin Wu, Qiang Ma, Fuqiang Chu, and Shan Hu. Phase change mass transfer model for frost growth and densification. International Journal of Heat and Mass Transfer, 96:11–19, 2016.
. J. Cui, W.Z. Li, Y. Liu, and Z.Y. Jiang. A new time- and space-dependent model for predicting frost formation. Applied Thermal Engineering, 31(4):447–457, 2011.
. Donghee Kim, Chiwon Kim, and Kwan-Soo Lee. Frosting model for predicting macroscopic and local frost behaviors on a cold plate. International Journal of Heat and Mass Transfer, 82:135–142, 2015.
. P.T. Tsilingiris. Thermophysical and transport properties of humid air at temperature range between 0 and 100 c. Energy Conversion and Management, 49(5):1098–1110, 2008.
. Suhas Patankar. Numerical heat transfer and fluid flow. CRC press, 1980.
. Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.
. Max Kandula. Frost growth and densification in laminar flow over flat surfaces. International Journal of Heat and Mass Transfer, 54(15–16):3719–3731, 2011.
. Refrigerating American Society of Heating, Air-Conditioning Engineers, and Ashrae. 2013 ASHRAE Handbook: Fundamentals. ASHRAE Handbook Fundamentals Systems-International Metric System. ASHRAE, 2013.
. Frank M White and Isla Corfield. Viscous fluid flow, volume 3. McGraw-Hill New York, 2006.
. W. Wang, Q.C. Guo, W.P. Lu, Y.C. Feng, and W. Na. A generalized simple model for predicting frost growth on cold flat plate. International Journal of Refrigeration, 35(2):475–486, 2012.