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Resumen

El control termostático con histéresis causa oscilaciones de temperatura en cuartos que están calentados o enfriados. Normal-
mente hay límites superiores e inferiores en temperatura donde el calentador o enfriador deja de funcionar. Modelos sencillos de 
primer orden con parámetros concentrados pueden predecir el comportamiento dinámico de estos sistemas. Sin embargo, la pre-
sencia de paredes adyacentes influye mucho en las oscilaciones de la temperatura en el cuarto. Las paredes almacenan 100 veces 
más energía interna que el aire, pero es el aire a quien se monitorea ya que este se calienta y/o enfría. En este trabajo se desarrolla 
un modelo matemático que toma en cuenta la presencia de la pared. El modelo es para un número arbitrario de cuartos en la for-
ma de un anillo. Se muestran soluciones numéricas detalladas para un número pequeño de cuartos con y sin almacenamiento de 
energía en las paredes. El análisis de perturbación ayuda a entender la física del proceso. 

Abstract

Thermostatic control with hysteresis causes temperature fluctuations in rooms that are being heated or cooled. Usually there are 
upper and lower temperature limits at which the heater or cooler cuts out. Simple first-order lumped parameter models can predict 
the dynamic behavior of such systems. However, the presence of adjacent walls greatly influences the temperature oscillations 
in a room. The walls store more than 100 times the internal energy of the air, but it is the air that is monitored and that is heated 
or cooled. In this work a mathematical model that takes into account the presence of the wall is developed. The model is for an 
arbitrary number of rooms in the form of a ring. Detailed numerical solutions are shown for a small number of rooms both with 
and without energy storage in walls. A perturbation analysis helps in understanding the physics of the process. 

Vol. 4 No. 3  (2012)  081 - 088

Effect of  Walls on Synchronization of  
Thermostatic Room-Temperature Oscillations

Fecha de recepción:       25-03-2012
Fecha de aceptación:     31-05-2012

Nomenclatura

A∞ heat transfer area with exterior
A  heat transfer area between rooms
c  specific heat
h  convective heat transfer coefficient
K  ratio of thermal resistances
m  ratio of heat capacities
M  mass
n  number of rooms
Q  heat rate from heater
t  time
T  temperature
T∞  exterior temperature
U∞  overall heat transfer coefficient with exterior

Greek symbols

∈  K/m
τ1,2  times scales

Subscripts and superscripts
a  room air
i  room number
i ± ½  wall number
L  lower temperature limit
max  temperatures with heaters always on
U  upper temperature limit
w  wall
*  dimensional quantity

Introduction

The possibility of synchronization of weakly-connected 
self-excited oscillations has been known for a long time 
(Pikovsky, A., Rosenblum, M., and Kurths, J., 2001, Stro-
gatz, S., 2003, Manrubia, S., Mikhailov, A., and Zanette, 
D., 2004). A mechanical example is the synchronization of 
pendulums supported on the same structure (Bennett, M., 
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Schatz, M., Rockwood, H., and Wiesenfeld, K., 2002, Wie-
senfeld, K., and Borrero-Echeverry, D., 2011, Li, A., Zeng, 
J., Yang, H., and Xiao,J., 2011). Very few thermal systems 
have been investigated in this regard though the possibility 
certainly exists. Synchronization of temperature oscilla-
tions in a thermal-hydraulic network has been experimenta-
lly observed (Cai, W., Sen, M., Yang, K., and Mc-Clain, R., 
2006). Temperature fluctuations due to heating or cooling 
in individual rooms of buildings is another example of the 
thermal problem which may lead to synchronization. These 
fluctuations are the product not only of external tempera-
ture variations, but also of thermal control systems which 
attempt to regulate room temperatures. It is important to 
understand these oscillations because of the effect that they 
have on overall building energy usage. 

As a simplified version of a multiple-roomed building we 
consider a ring of rooms in which each room has a heater 
that goes on or off depending on the temperature of the air 
in that room. Though the cooling problem is very similar, 
we will assume that there is only heating. A little hysteresis, 
i.e. a dead band, is built into the thermostat in the form of a 
difference in temperatures at which the heater goes on and 
that at which it goes off. 

First-order lumped parameter models have been postulated 
for the analysis of these temperature oscillations (Cai, W., and 
Sen, M., 2008, O’Brien, J., and Sen, M., 2011). However, the-
se studies have not taken the presence of walls into account. 
Though the air temperature determines the comfort level, 
the walls are  the ones that store heat. The walls thus stron-
gly affect the dynamics of thermal energy in buildings, even 
though it is the air that is being heated. It is thus important 
to include both air and walls, and to understand the effect of 
interaction between them. 

The objective is to analyze the temperature dynamics in n 
rooms in the form of a ring as shown in Fig. 1. The dimen-
sional air temperature in room i is Ti (t

*), where t* is dimen-
sional time, and the dimensional wall temperatures on either 
side of it are Ti -½ (t*) and Ti+½(t*). Integer  subscripts are used 
for the air and fractional for the walls on either side.

Of course, being a ring, i = n + 1 is the same as i = 1, and i= 
n + ½  the same as i = ½. There is convective heat transfer 
from the air in each room to the walls. There is also heat 
exchange from the room to the exterior and interior spaces 
which are both at temperature T∞.

Model of n Rooms with Walls

We will use a lumped parameter analysis, and neglect radia-
tion both within the rooms as well as outside. For simplicity, 
all rooms and walls are taken to be identical. Energy balance 
for the air in the rooms gives 

M c dT
dt

U A T T hA T T hA T Ta a
i

i i i i i
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*
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Figure 1. Room with walls.

where Ma is the mass of the air, ca is the specific heat of air 
at constant pressure, h and A are the heat transfer coefficient 
and area for convective heat transfer between the air and 
the wall, respectively, and U∞ and A∞ are the overall heat 
transfer coefficient and area for heat exchange with T∞. The 
heat input is

Q Q
i t

heater on
heater off

* *
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 0         

(1b)

Energy balance for the walls gives

M c
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The unknowns in Eqs. (1) are Ti (t
*), Ti+ ½ (t*), and Q i (t

*) for 
i= 1, 2, . . . , n, with initial conditions Ti (0), Ti+½ (0), and 
Q i(0). It must be emphasized that the equations are nonli-
near because the instants at which the heating switches from 
on to off, or vice versa, are not a priori known but depend 
on Ti (t

*).

The limits of operation of the thermostats must also be pres-
cribed. They have an upper limit TU at which they switch off, 
and a lower limit TL at which they come on. 

If the heater is kept always on, the final steady state tempe-
ratures of both wall and air, Ti,max and Ti+½ , max, respectively, 
given by Eq. (1) will be

T T
U A

Ti max i max,
*

,

*= = +
+

∞ ∞
∞1

2

Q

         
(2)

Nondimensional equations
To nondimensionalize Eqs. (1), the following independent 
and dependent variables

t U A
M c

t
a a

= ∞ ∞ *,
        

(3a)
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T U A T Ti i= −( )∞ ∞
∞Q
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(3b)

Q Q
Qi
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*

* ,
         

(3c)

are used. The governing equations become

dT
dt
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with given initial conditions Ti(0), Ti-½ (0), and Q i(0), where

K hA
U A

=
∞ ∞

,
        

(5a)

m M c
M ca a

= .w w

        
(5b)

Parameters

The parameter K represents the ratio of the thermal resis-
tance between the air in the room and the outside to that 
between the air and the walls. The value depends greatly on 
the geometry of the design, the materials used, and the pre-
vailing wind and atmospheric conditions. Nonetheless, one 
has to have some idea for the value of K to search for solu-
tions in that range. Of the two areas, A may be much larger 
that A∞, or may be of comparable size. The convective heat 
transfer coefficient h is generally small because it is mostly 
due to natural convection. U∞ is affected by insulation in the 
outer walls which tends to reduce its value, and by the winds 
blowing on the exterior which will increase it.

The other parameter m is the ratio of the heat capacity of 
a wall compared to that of the air in the room. This is the 
parameter that controls the effect of the wall on the room 
temperature, and it is usually large.

To get an idea of the numerical values of the parameters, 
let the volume of air=27m3 per room, the mass of each 
wall=6210 kg. We also take A=9m2, A∞=24m2, and cw=0.75 
kJ/kg·K. This gives m=142.4. The two heat transfer coeffi-
cients, one internal and the other external, are much more 
problematic (Longstaff, R., and Finnigan, J., 1983, Hagishi-
ma, A., and Tanimoto, J., 2003, Hagishima, A., Tanimoto, J., 
and Narita, K., 2005, Emmel, M., Abadie, M., and Mendes, 
N., 2007, Palyvos, J., 2008, Shao, J., Liu, J., Zhao, J., Zhang, 
W., Sun, D., and Fu, Z., 2009, Defraeye, T., Blocken, B., and 
Carmeliet, J., 2011, Luo, C., Moghtaderi, B., Hands, S., and 

Page, A., 2011). There are some values available in the lite-
rature for this, but the numbers obviously depend strongly 
on airflow conditions. If we take h=5 W/m2·K, U∞=10 W/
m2·K, we get K = 0.188. The value of K is important since 
the appearance of in-phase and out-of-phase synchroniza-
tion is sensitive to it. For the present, however, fixed values 
of K=0.1 and m=100, which are reasonable, will be taken.

The heat rate Q * is another parameter that must be chosen. 
Assuming that the heater, if it is always on, can produce maxi-
mum air and wall temperatures of Ti, max=Ti + ½ , max= (40+T )ºC, 
then Q *= 9.6 kW. If we take TU = (17.6 + T∞) ºC and TL = (8.8 
+ T∞) ºC, then their non-dimensional counterparts are TU = 
0.44 and TL = 0.22, which are the values chosen in this study. 

Initial conditions will be taken to be TL for all the rooms as 
well as the walls, and the heater is initially assumed to be on.

Specific Configurations

The problem of an arbitrary number of rooms is difficult to 
solve and analyze due to the nonlinearities and large num-
ber of parameters involved, so we will begin with a small 
number of rooms. 

Single room, n = 1

Though this is not a ring, as shown in Fig. 2, it is a simple 
configuration which yields valuable information to which 
the other solutions can be compared.

T∞ T1

T 1
2

*

*

Figure 2: Single room with wall.

Here, Eqns. (4) become
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The solution of Eq. (6b) is
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Substituting in Eq. (6a) gives

dT
dt
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which upon differentiation is equivalent to
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The solution for values of K and m in the range we are con-
sidering is
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There are two time scales τ1 and τ2.

Two rooms, n = 2

This is shown in Fig. 3. Eqns. (4) are
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Three rooms, n = 3

Three rooms are shown in Fig. 4. The equations are similar 
to Eq. (12) above, but with a third room and wall added.

Limiting  Analyses

No energy storage in walls, m = 0

This is equivalent to ignoring the energy storage capacity of 
the wall. For n = 1, Eqs. (6) give

T∞ T∞

T *
1

T *
2

T *
1 1

2

T *
1
2

Figure 3: Two-room configuration with separating walls.
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Figure 4: Three-room configuration with separating walls.
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= ,
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dT
dt

T1
1 1= −Q .

        
(14)

Fig. 5 shows the temperature and Fig. 6 the heat rate. The 
time constant of the first-order system is unity.

These graphs and those that follow are generated using an 
explicit Euler method with a step size in time of 0.001. In-
tegration is performed up to 50,000 time steps, but only the 
last 5 time units are shown. This is done to enable the tran-
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sients in the system to die out. The steady-state dynamics of 
the system is strongly dependent on the system parameters 
and initial conditions chosen. At this stage a comprehensi-
ve study of all possibilities has not been carried out.In the 
following graphs the values of the parameters and initial 
conditions are the same as mentioned before, except in Fig. 
9 where the values are different and indicated in its caption.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

T 1

Figure 5: Temperature of single room without energy storage in wall. 
Dashed lines are lower and upper temperature bounds of thermostat.

For n = 2, Eqns. (12) give

T T T T1
2

11
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1 2
1
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dT
dt

T K T T1
1 1 2 1= − + −( )Q ,

     
(15b)

dT
dt

T K T T2
2 2 1 2= − + −( )Q ,

     
(15c)

The temperature-time responses for n = 2 are shown in Fig. 
7, and for n = 3 in Fig. 8.
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Figure 6: Heat rate in single room without energy storage in wall.
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Figure 7: Temperatures of two rooms without energy storage in walls. 
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Figure 8: Temperatures of three rooms without energy storage in walls.

So far only in-phase synchronization has been shown. Fig. 
(9) shows a situation in which an out-of-phase synchroniza-
tion appears. Note that all the parameter values are the same 
as before, except those indicated in the caption.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

T 1
,T

2,
T 3

Figure 9: Temperatures of three rooms without energy 
storage in walls; K = 0.001 with T2(0) = TU   , Q2(0) = 0.
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Infinitely massive walls, m → ∞

For this, Eq. (4c) shows that

dT

dt
i+

=
1
2 0.

         
(16)

The walls are so massive that their temperatures remain 
constant with time, equal to the initial values Ti+ ½(0). Eq. 
(4a) then shows that

dT
dt

K T

K T T

i
i i

i i

= − +( )

+ ( ) + ( )
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0 01
2

1
2

.
      

(17)

The last term in this equation is a constant, and the problem, 
even with multiple rooms, is then equivalent to that for a 
single room without a wall. The dynamics of the rooms are 
decoupled. Note also that the time constant of the first-order 
system is 1/(1 + 2K).

No heat exchange with wall, K = 0

For this

dT
dt

Ti
i i= −Q ,

      
(18a)

dT

dt
i+

=
1
2 0.

      
(18b)

This is essentially the same as taking m = 0 discussed pre-
viously. The air temperature equation is the same while the 
wall temperature is constant in time.

Dynamics with Energy Storage in Walls

In reality, m is neither zero nor infinity, and the dynamics 
has to be calculated numerically. Solutions for a single room 
with a wall are shown in Fig. 10. Fig. 11 shows (T½ - 0.3229) 
in an expanded scale to be able to appreciate the small am-
plitude temperature oscillations in the wall, being about 
0.01 % of those in the air. Fig. 12 shows the temperature 
fluctuations for two rooms, and Fig. 13 for three rooms.

Perturbation Analysis

To simplify the analysis, we will assume that ∈ = K/m 


 1. 
The perturbation is regular, so that

T T T Ti i i i= +∈ +∈ +0 1 2 2 ...        (19)

T T T T
i i i i+ + + +

= +∈ +∈ +1
2

1
2

0
1
2

1 2
1
2

2 ...
       

(20)
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Figure 10: Single room with energy storage in wall: 
air and wall temperatures.
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Figure 11: Single room with energy storage in wall: wall temperature.
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Figure 12: Two rooms with energy storage in walls: 
air and wall temperatures.
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Figure 13: Three rooms with energy storage in walls: 
air and wall temperatures.

Thus, to lowest order
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The wall temperatures, Ti+ ½= Ti+ ½(0), are constant. Eq. (21a) 
is similar to that studied previously where m = 0. Thus the 
lowest order solutions are as if they were without energy 
storage in walls. The time constant is 1/(1 + 2K).

To the next order the time scales from Eqs. (11) are

τ1
1 1= +

∈
K

K       
(22a)

τ 2
1

1
=

+ K       
(22b)

The ratio of the two is large, so this problem is stiff. The se-
cond time scale is the same one obtained from Eqs. (6) with 
K= 0 and T½ constant. So the first one, which is large, is due 
to the presence of the wall.

Conclusions

Though human comfort is felt through the air, thermal ener-
gy storage is in the walls. Roughly 100 times the energy in 
the air is stored in the walls. The massiveness of the walls 
serves to damp out the temperature oscillations in the air as 
well as introduce a large time scale. Thus a slow and small-

amplitude modulation is introduced into the temperature 
dynamics by the walls. The nature of the solution depends 
on a large number of parameters: initial conditions, low and 
high temperature cutoffs for the thermostat, and parameters 
K and m. Some of these will lead to in-phase synchroni-
zation, as in Fig. 8, and others to out-of-phase, as Fig. 9. 
This was not studied here in any detail. The stiffness of 
the governing equations is a primary obstacle to an easy 
numerical solution of the problem. Nonlinearity is a second 
impediment. To a lesser degree, the third is the number of 
parameters and initial conditions that must be specified. 
Even for the same set of parameters, different initial condi-
tions may lead to different long time behaviors. Of practical 
interest are the bifurcations that exist as a parameter such 
as m or K is changed through a wide range of values. This 
co-existence of attractors is an interesting phenomenon that 
will be investigated in future work.
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