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Abstract
We developed a theoretical model of a liquid metal magnetohydrodynamic (MHD) generator in annular geometry operating in 
direct current (DC) mode. The geometrical concept of the MHD generator consists of a very thin annular duct where the conduc-
ting fluid flows due to a constant pressure gradient in an imposed azimuthal magnetic field. We have supposed negligible effects 
of the induced magnetic field which is characteristic of MHD flows at very low magnetic Reynolds numbers. These assumptions 
reduce the MHD equations to one dimensional fully developed flow where the induced current is given only by Ohm’s law. The 
theoretical performance of the generator is analyzed as a function of the external electrical load for different operating conditions. 
The electrical output power depends on the imposed magnetic field, the electrical conductivity of the fluid, its velocity and the 
external electrical load. The maximum output power occurs when the external resistance equals the internal resistance of the 
generator. We found that the internal resistance depends on the imposed magnetic field and geometrical parameters as in the case 
of the classical MHD generator in rectangular geometry, in spite of the absence of Hartmann layers. We analyze the isotropic 
electrical efficiency of the MHD generator for an external electrical load ranging from negligible resistance (short circuit) to very 
large resistance (open circuit) conditions. For a given external load the higher efficiencies of the generator can be achieved by 
increasing the imposed magnetic field.

Resumen
Desarrollamos un modelo teórico de generador magnetohidrodinámico (MHD) de metal líquido en geometría anular que opera en 
modo de corriente directa (DC). El concepto geométrico del generador MHD consiste de un ducto anular muy delgado por donde 
fluye el fluido conductor debido a un gradiente de presión constante en un campo magnético azimutal impuesto. En este modelo 
se consideró la aproximación de campo magnético inducido depreciable, que es característico de los flujos MHD a muy bajos 
números de Reynolds magnéticos. Estas suposiciones reducen las ecuaciones de MHD a un flujo unidimensional completamente 
desarrollado donde la corriente inducida viene dada solo por la ley de Ohm. Se analizó la eficiencia teórica del generador y la 
potencia eléctrica de salida en función de la carga eléctrica externa para diferentes condiciones de operación. Se encontró que la 
potencia máxima entregada por el sistema se produce cuando la resistencia externa es igual a la resistencia interna del generador. 
Sin embargo, se encontró que la resistencia interna se comporta similar a la del generador MHD en geometría rectangular a pesar 
de la ausencia de capas límite de Hartmann. Analizamos la eficiencia eléctrica isotrópica del generador MHD para una carga eléc-
trica externa que varía desde una resistencia eléctrica despreciable (cortocircuito) hasta condiciones de alta resistencia (circuito 
abierto). Para una carga externa dada, la eficiencia del generador se incrementa conforme se incrementa la intensidad del campo 
magnético impuesto.
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Introduction

An MHD generator converts the motion of an electrically 
conducting fluid directly into electrical energy through the 
interaction of the fluid in motion with an applied magnetic 
field. The liquid metal MHD generator uses simple geometry 
in its mechanical design and could be more efficient than 
the conventional generation systems due to the absence of 
turbines or prime motors. The most simplified conceptuali-
zation of a typical MHD generator consists of three basics 
elements: 1) a rectangular cross-section duct, where the li-
quid metal flows, 2) the electrodes, responsible for collecting 
the induced currents in the generator and forming the lateral 
walls of the duct and 3) a magnetic field source. Thus, when 
the conducting fluid moves in the duct, it interacts with the 
imposed magnetic field inducing an electric current perpen-

dicular to the movement of the fluid and to the applied mag-
netic field. The induced electrical current can be extracted 
through an external circuit (electrical load) connected to the 
electrodes. If the motion is unidirectional then the device 
works as a direct current (DC) generator. 

Traditionally, theoretical models of MHD generators have 
been divided according to the physical characteristics of 
the fluid. The ideal case considers an inviscid fluid, which 
we denote the Faraday MHD generator, while other consi-
ders a viscous fluid, which we denote the Hartmann MHD 
generator. In the past, several theoretical models of MHD 
generators in a rectangular duct geometry have been presen-
ted. Jackson [1], presents the model of a direct current MHD 
Faraday generator, calculating the electrical power output 
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and the efficiency of the system, and expresses the internal 
resistance of the machine in terms of the dimensions of the 
MHD channel and the electrical conductivity of the fluid. 
Hughes et al [2], show an equivalent circuit of a direct cu-
rrent MHD Hartmann generator and calculate its internal re-
sistance using the electrical characteristics of the generator. 
The MHD generator configuration is generally in the geo-
metry of a rectangular channel and some experimental pro-
totypes have been designed using MHD generator models in 
rectangular channel operating in DC mode [3-7]. However, 
the interest in studying other geometries is still present.

In this paper, we study a liquid metal MHD generator when 
the fluid is driven by a constant pressure gradient, in an an-
nular duct. In our model, we consider the presence of a pure-
ly azimuthal magnetic field in the annular region, where the 
electrodes are the walls of the annular duct formed by two 
coaxial cylinders. We assume that the azimuthal magnetic 
field, can be induced by a cylindrical superconductor. The 
use of superconductors in the construction of electromagnets 
in MHD generators has been previously proposed [8-9-10]. 
The induction of azimuthal magnetic field by a superconduc-
tor filament was demonstrated by [11]. 

The MHD generators in annular duct geometry, as well as 
the behavior of the MHD flow have been studied in the last 
century. In fact, analytical solutions for the MHD laminar 
flow in an annular duct under a purely radial magnetic field, 
are well known [12-13-14-15]. Elco et al. [12], proposed an 
MHD system of direct current generation, formed by two 
parallel discs located axially at a fixed distance of separation. 
These discs are the electrodes of the generator. In the space 
between the electrodes, an annular duct is formed using two 
cylindrical magnets, one placed in the center and the other 
in the outer radius. The magnets are radially magnetized, so 
that in the annular region a radial magnetic field exists. The 
authors calculated the electrical and thermal performance of 
the system. On the other hand, Rao and Erteza [16], studied a 
multipolar DC generator, its annular section being construc-
ted by two coaxial cylinders where an ionized gas flows. The 
magnetic poles and electrodes are placed on the perimeter 
of the internal and external cylinder. The distribution of the 
magnetic poles is such that, in the annular region, the mag-
netic field component above the magnetic pole is radial and 
azimuthal on the electrodes, forming essentially rectangular 
MHD channels distributed on the annular section. In their 
analysis, the authors found the internal impedance of the ge-
nerator, in the same way as Hughes [2].

In comparison with previous models, in the present contribu-
tion we extend the previous theoretical solution, analyze the 
generator performance in terms of electric power as a func-
tion of the electric load and find the theoretical efficiency of 
the generator, using a variation of the Hartmann model and 
considering the inductionless approximation [17], together 
with the approximation of the small annular space [18-19].

General formulation

The proposed MHD generator of annular geometry is 
shown in fig. 1. It consists of two concentric cylinders of 
radial lengths ri and ro, forming a very thin annular duct, 
which has a thickness δ, where an incompressible con-
ducting fluid flows axially in steady-state,  in an azimu-
thal magnetic field. The length of the MHD duct is L and  
is greater than δ so that the edge effects at the entrance 
and exit of the MHD generator can be neglected. It is also 
assumed that the imposed magnetic field is independent 
of the axial coordinate. The interaction between the fluid 
in motion and the magnetic field induces a radial electric 
current that can be extracted through the electrodes to an 
external circuit. The walls of the annular duct formed by 
the inner and outer cylinders constitute the electrodes of 
the generator. The flow dynamics is governed by the Na-
vier-Stokes equations with the Lorentz force as the body 
force which results from the interaction between the indu-
ced current and the azimuthal magnetic field.

 
Figure 1. Sketch of the cross-section of an MHD Generator in annular 

geometry.

Formulation of problem

The flow in the generator is purely axial, axisymmetric 
and fully developed so that the velocity profile has the 
form, u=uz(r)ez where ez is the axial unit vector. The im-
posed magnetic field is given by B0=(S ⁄r)eϕ , where S 
measures the field strength and eϕ is the azimuthal unit 
vector in a cylindrical polar coordinate system (r,ϕ,z). 
Since the fluid motion just perturbs slightly the applied 
field B0, the induced magnetic field, b, associated with the 
induced currents in the generator (~σ u×B0 ) is negligible 
with respect to B0. This leads to the so called inductionless 
approximation [17] which is characteristic of MHD flows 
at very small magnetic Reynolds number Rm=μσu0l, where 
μ is the magnetic permeability, σ the electrical conducti-
vity, and u0 and l are the characteristic velocity and length 
scales of the  flow, respectively.
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 Electromagnetic formulation

  Induced current and voltage

The induced current J in the transducer is given by the Ohm’s 
law for a moving media as

J E u B� � �� �� 0      (1)

where E is the electric field associated to the external electri-
cal load. In the present case, the Ohm’s law reduces to

j r E
u r S
rr r

z� � � �
� ��

�
�

�

�
��

          
(2)

Here Er and jr are the radial component of the induced electric 
field and current density, respectively. Due to the induction-
less approximation, E could be considered as a conservative 
field, so that ∇×E ≈0 and E=-∇φ, φ being the electrostatic 
potential. Moreover, charge conservation requires ∇⋅J=0, 
implying that  jr~1⁄r, whose constant of proportionality for 
convenience is defined as -σc. Here, c is some constant which 
depends on the external circuit conditions and it will be de-
termined later. Inserting j r in (2) and considering the pre-
vious assumptions we obtain

j
r

u r S
rr

z� �
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� ��

�
�

�

�
��

�

          
(3)

We calculate the total current I flowing through the electro-
des as 

I ds j rdzd L c
S

L

r� � � � �� ��J n
00

2

2

�

� � � ,

        
(4)

and the total induced voltage VT between the terminals as [2],

V d E dr
r
drT r

r

r

r

r

i i

� � � � � �
�
�

� ��� �E l
0 0



�
��

        
(5)

If an external electrical load Rk is connected between the ter-
minals of the generator, the total voltage across the load is 
just 

V R IT k=             (6)

Additionally, in the equivalent circuit [2], the voltage VT  is 
represented as the sum of the open circuit voltage Voc plus the 
voltage drop due to the internal resistance of the generator Ri, 
this relation is written as

V R I VT i OC� � �            (7)

  Total electric power

The output electric power, Pe, is calculated from the relation 
Pe=VT I or from the definition 

P dv L c E dre r
r

r

v i

� � � � �� J E 2

0

� �
         

(8)

where v is the volume of the generator.

 Hydrodynamic formulation

The fluid velocity u satisfies the incompressibility condition 
∇∙u=0,  and  is governed by the Navier-Stokes equation

�
�
� ��� � � � � � � � �

u u u u J B
t

p v1 2

0�         
(9)

where the term J×B0 is the Lorentz force. Considering the 
assumptions given in Section 2 and Section 3, eq. (9) sim-
plifies as

�
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z
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r r

r u
r
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z

       
(10)

where p is the pressure, ν kinematic viscosity and ρ the mass 
density. 

The mechanical driven power is related to the balance be-
tween the pressure gradient and the Lorentz force, in this 
sense we define the flow power as

P dv LS c u
r
drf
z

r

r

v i

� � �� � � � �� J B u
0

2

0

� �
      

(11)

Physically, it is the mechanical power needed to overcome 
the Lorentz force in order to produce useful electricity.

 The small gap approximation

In the following theoretical development, we assume a very 
small annular space defined by ri ≫ δ leading to negligible 
curvature effects. Firstly, we define the reduced variable χ 
as χ=(r-ri)⁄δ where χ ∈ [0,1]. This approximation reduces the 
charge conservation condition to jr≈(-σc)⁄ri  and the Ohm's 
law (2) in terms of χ to

j u S
rr
z

i
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�

�
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�

1

        
(12)

Applying this approximation to the momentum equation (10) 
in terms of χ, it reduces to
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(13)

In the Appendix A, we describe in more detail the small gap 
approximation.

 Electrical efficiency of the MHD generator

The isotropic electrical efficiency of the MHD generator can 
be defined as the ratio of the output electrical power to the 
flow power, that is

� �
P
P
e

f           
(14)

Direct Current model

In the DC model, the fluid motion is driven by a constant 
pressure gradient of the form -dp⁄dz=G, producing a steady 
velocity in the z axial direction, which in terms of the redu-
ced variable χ reads u=uz(χ)ez Then, the fluid motion des-
cribed by equation (13) simplifies as

G v u cS
r

z

i� � �
�
�

�
�
�

� �
2

2

2 2
0

        
(15)

Equation (15) written in terms of the dimensionless variables  
G=Gδ2⁄ρνu0, ûz=uz⁄u0 , ri=ri⁄δ,  c=c⁄S u0 and Ha v� � �/    
becomes

2 2

2 2

ˆ ˆ ˆ 0
ˆ

z

i

u cHa G
rχ

∂
− + =

∂         
(16)

Where u0 is the hydrodynamic mean velocity and Ha is the 
Hartmann number which estimates the ratio of the Lorentz 
to viscous forces. The analytical solution of the last equation 
that satisfies non-slip boundaries conditions at the inner and 
outer walls is

( )
2

2

ˆ ˆˆ 1
ˆ2z
i

G cHau
r

χ χ
 

= − −  
          

(17)

The average velocity 
1

0m zu u d χ= ∫  expressed in dimension-

less quantities is

2

2

ˆ1 ˆˆ
ˆ12m
i

cHau G
r

 
= − 

          
(18)

where 0ˆ /m mu u u= . 

In the following we determine the electrical characteristics 
of the MHD generator. The induced current in the generator, 

given by integrating eq. (12) in the interval [0,1], results as

j u S
rr m
i

� � �� �� 1 K
       

(19)

where  K= -∆φri ⁄ δumS  is the load factor parameter which 
depends on the electrical conditions at the external circuit. 
For short-circuit condition K is zero, while for open-circuit 
condition, K is equal to unity. If we replace charge conserva-
tion equation jr≈-σc⁄ri  into eq.(12) and we integrate it from 
zero to unity, the resulting equation is

c
r

V u S
ri

T m
i
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1
�         

(20)

In dimensionless terms (20) reads as

ˆ ˆˆ ˆi
T m

rc V u
Ha

= − +
        

(21)

where 0T̂ TV V u vρ σ= . Inserting (18) in (21) and solving 
for the constant c , we get

( )
( )

2

2 2

ˆ ˆˆ ˆ12
ˆ

ˆ12
i T i

i

r HaG V r
c

Ha Ha r

−
=

+         
(22)

The dimensionless total current (4) flowing through the elec-
trodes is 

ˆ ˆ2I cHaπ=          (23)

where 0Î I Lu vρ σ= . Inserting (22) in (23), and solving 
for V̂T we obtain the dimensionless terminal voltage as 

( )2 2

3

ˆ ˆˆ12ˆ
ˆ ˆ24 12

i
T

i i

I Ha r HaGV
r rπ

+
= − +

       
(24)

For open circuit conditions I=0 , and the voltage is given as 
V̂oc=Ha Ĝ ⁄(12r̂i ). For short circuit conditions V̂T=0 and the 
current is Îsc=(2π r̂i

2HaG) ⁄(Ha2+12r̂i
2). The dimensionless 

internal resistance R̂i of the generator is given by ratio of 
the open circuit voltage to the short circuit current [2]. The 
resulting equation for R̂i is

2 2

3

ˆ12ˆ
ˆ24

i
i

i

Ha rR
rπ

+
=

         
(25)

In fig.2 a) we show the dimensionless internal resistance of 
the generator as a function of Ha for different values of  r̂i. 
In the plot we observe that R̂i increases as the magnetic field 
increases, this behavior is more sensitive for r̂i<50. For the 
case of vanishing magnetic field Ha→0, the internal resistan-
ce reduces to the geometrical electrical resistance δ⁄2πσLri. In 
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fig.2 b), for all cases the internal resistance decreases when r̂i 
increases. For extremely large values of r̂i, the internal resis-
tance tends to zero. These two graphs show that the internal 
impedance of the MHD generator is dependent on the mag-
netic field and the internal radius of the generator.

a)

 b)
Figure 2. Dimensionless internal resistance R̂i  a) as a function of Ha for 
different values of  r̂i and b) as a function  r̂i for different values of  Ha.

On other hand, if we express eq. (24) in terms of the internal 
resistance and the open circuit voltage, the resulting equation 
is 

0
ˆ ˆ ˆ ˆ
T i CV R I V= − +          (26)

Now, from eq. (6) the dimensionless voltage drop is given 
as V̂T=ÎR̂k, where R̂k=LσRk. Inserting this relation in (26) and 
solving for the terminal voltage we obtain

0 0

ˆˆ ˆ ˆ
ˆ ˆ

k
T C C

k i

RV V KV
R R

 
= = 

+          
(27)

where the load factor K is given in terms of load and internal 
resistances as

ˆ
ˆ ˆ

k

k i

RK
R R

=
+          

(28)

Combining eqs. (26), (27) and (28), and solving for Î we 
obtain

0
1ˆ ˆ

ˆC
i

KI V
R
−

=
         

(29)

The output electric power given in eq. (8) is expressed in 
dimensionless form by considering the results of eq. (27) and 
(29). The resulting equation is

( ) 2
0

1ˆ ˆ
ˆe C

i

K K
P V

R
−

=
         

(30)

where P̂e=Pe⁄Lρνu0
2 .

Figure 3. Dimensionless electric power P̂e as a function of the load factor  
K for different values of Ha for a given r̂i.

In fig. 3, we plot the dimensionless electric power Pe as a 
function of the load factor for several values of  Ha . Parti-
cularly, the maximum power Pemax occurs when the condition  
K=1/2 is satisfied, that is, when Rk→Ri. In addition, we ob-
serve that the electric power increases as we increase the Ha 
values, however, when very large values of Ha are reached, 
the electric power does not increase in the same way as for 
small values of Ha. This behavior is also found for the maxi-
mum electrical power, Pemax, as is shown in figure 4. In this 
case, Pemax reduces as

0̂
ˆˆ

4
C SC

emax
V IP =

         
(31)

In the graph is observed for given values of r̂i how the maxi-
mum electrical power increases as Ha grows. In fact, from 
an asymptotic analysis to the equation (31), it was found that 
the maximum electrical power tends to a value of πr̂i⁄24. 

Inserting (22) and (27) into (17) we obtain an expression for 
the velocity:

( ) ( )
2

3

ˆ 1
ˆ 1 1ˆ2 ˆ24z

i i

Ha KGu
r R

χ χ
π

 −
= − − 

         
(32)
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Figure 4. Maximum electric power P̂emax as a function of Ha for some 
values of r̂i.

The average velocity in terms of K reduces to:

( )2

3

ˆ 1
ˆ 1 ˆ12 ˆ24m

i i

Ha KGu
r Rπ

 −
= − 

          
(33)

 
Figure 5. Average velocity ûm as a function of K for several Ha.

We plot in fig. 5 the average velocity as a function of K. Note 
that as Ha is increased, the flow slows down. This is becau-
se, as the magnetic forces become larger, the Lorentz force 
also increases and act in opposition to the fluid motion. For 
all Ha, the minimum value of average velocity is for short 
circuit condition, since the current in the circuit is maximum, 
and therefore, the Lorentz force is also maximum.  

The flow power (11) in dimensionless form is:

( ) ( )2
2

2

1 ˆ24ˆ1 ˆˆˆ
ˆˆ24

i
OC

i i
f

i i

Ha K rHa K V
Har R

P
r R

π
 −

− + 
 =

      

(34)

where Pf=Pf⁄(Lρνu0
2).

The fig. 6 shows the flow power as a function of K for several  
Ha . For short circuit condition the flow power is maximum 
and decreases as the load resistance increases, tending to 
zero, which corresponds to the open circuit condition.

Figure 6. Dimensionless flow power P̂f as a function of K for different Ha.

Finally, we calculated the electrical efficiency of the genera-
tor, defined in eq. (14), by using (30) and (34), the resulting 
equation is 

( )2 2

2 2

ˆ12
ˆ12
i

i

K Ha r
Ha K r

η
+

=
+         

(35)

Figure 7. Electrical efficiency of the generator η as function of the load 
factor K for some values of Ha.

In fig. (7) we plot the electrical efficiency of the generator, 
given in eq. (35), as a function of K for several Ha. We ob-
serve in the graph that the electric efficiency of the generator 
has maximum values in the case of short circuit operation. 
Also, we observe that efficiency for open circuit conditions 
is null. For all other cases, we observe that a better efficiency 
can be obtained by increasing Ha. In general, the maximum 
efficiency is reached as Ha tends to infinity. In addition, note 
that the maximum electrical power does not coincide whit 
the maximum efficiency of the generator.

Conclusion

We have analyzed the performance of a direct current MHD 
generator in annular geometry. The MHD equations were 
solved under the inductionless approximation and assuming 
a very small annular space of the duct. We found that the 
internal resistance of the generator depends on the Hartmann 
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number, Ha, and the internal radius of the duct. As for the 
electrical performance, the maximum electrical power deli-
vered by the generator takes place in the condition where 
the internal resistance equals the load resistance, as occurs 
in the Faraday generator. The analyzed generator has cha-
racteristics of the Faraday generator and the Hartmann flow, 
although the Hartmann layers are inexistent due to magnetic 
field configuration.

Appendix A. Formulation of the small gap approxima-
tion.

It is useful to express the momentum equation (10), the 
Ohm´s law (3) and the charge conservation condition, jr~1⁄r, 
in terms of the reduced variable χ=(r-ri)/δ, where χ ∈ [0,1]. 
The respective resulting equations are 
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And  

j c
rr
i
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(38)

Now, we follow the formulation given by Rudraiah (1966) 
and Ávalos et al. (2014), where the annular, δ=r0-ri, is as-
sumed to be small enough so that ri⁄δ > 1. Considering this 
assumption, we develop the Taylor expansion until the first 
order term of (χ+ri⁄δ)-1=δ⁄ri +O(2) and (χ+ri⁄δ)-2=(δ⁄ri )

2+O(2). 
These results are applied to equations (36), (37) and (38) 
leading to equations (12), (13) and jr≈(-σc)⁄ri as is shown in 
Section 3.3. 

With this approach, the Lorentz force becomes constant and 
the effect of curvature in viscous terms of momentum equa-
tion is just negligible. 
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