

# Modelo cinemático de reductor cicloidal magnético

M.C. Fo-Lyn Yong Primero\*, Dr. Ricardo Chicurel Uziel\*\* Universidad Nacional Autonoma de México Av. Universidad 3000, Delegación Coyoacán

Ciudad Universitaria, D.F. C.P. 04510, México \*folynyong@hotmail.com,\*\*RChicurelU@iingen.unam.mx.

## Resumen

Se presenta una formulación para la resolución del modelo cinemático directo de un reductor de velocidad cicloidal magnético. El enfoque propuesto se basa en aplicar el método de Chace y usar ecuaciones vectoriales para determinar las coordenadas de la cinemática directa. También se demuestra con la simulación que el modelo es viable para el análisis de posicion, velocidad y aceleración.

# Abstract

This paper presents a formulation of the cycloidal magnetic gear kinematic direct model. This formulation focuses on Chace planar method and vectorial equations to determine the coordinates of the kinematic model. Finally, the theoretical calculation has been successfully applied and shows that the model is useful to analyze position, velocity and acceleration.

# Palabras clave:

Reductor de velocidad magnético, modelado cinemático directo.

# Introducción

Las transmisiones magnéticas, son aquéllas que usan engranes con imanes. Un engrane mecánico transmite movimiento manteniendo el contacto entre los dientes. En el caso de los engranes magnéticos el movimiento se transmite por la atracción y repulsión de los imanes que están en la periferia de los discos.

En 1967 Reese patentó un arreglo de engrane coaxiales magnéticos que consistía en un eje de alta velocidad y un rotor de baja velocidad. La transmisión de torque era baja porque sólo una de las partes tenía imantación permanente [1].

En el 2005, Atallah y Howe (véase Figura 1. Izq.) presentaron una caja de engranes magnéticos de alto rendimiento; en sus simulaciones la densidad de torque excede  $100 \text{ kNm/m}^3$ . Este par fue estimado con simulaciones de elemento finito magnético, siendo la reducción de velocidad *i*= 5.5:1 [2].

En 2005, Rasmussen, mostró los primeros resultados experimentales de un prototipo de transmisión magnética coaxial (véase Figura 1. Der.) que producía prácticamente la misma reducción de velocidad, i=5:1, con una densidad de torque cercana a 90 kN/m<sup>3</sup> y una eficiencia de 81% [3].

El prototipo de estudio es el descrito en [4]. El reductor de velocidad cicloidal emplea engranes de imanes permanentes que actúan como dientes. Los imanes tienen sus ejes orientados radialmente, tanto en el engrane móvil como en el engrane fijo. Una fuerza normal se desarrolla en el punto de

# **Keywords:**

Cycloidal magnetic gear, mathematical kinematic direct model.

contacto entre los engranes para equilibrar la atracción magnética y la fuerza centrífuga del engrane móvil. Además, se elimina la carga radial sobre el cojinete de apoyo del engrane móvil.



**Figura 1**. Izq. Dibujo de una transmisión magnética [2]. Der. Transmisión de engranes magnéticos [3].

Las Figuras 2 y 3 muestran la sección longitudinal y transversal del reductor de velocidad cicloida magnético. Cada engrane tiene un número par de imanes distribuidos uniformemente alrededor de su periferia alternando polaridades (un par Norte-Sur corresponde a un diente de un engrane común).

En los párrafos siguientes se describe el modelo cinemático del reductor cicloidal magnético.

## Descripción del reductor cicloidal magnético.

Un reductor cicloidal magnético es un mecanismo de transmisión que consta principalmente de una flecha de entrada, acoplamiento con excentricidad, engrane móvil, engrane fijo, flecha de salida. Los elementos secundarios pueden ser carcasa, pernos, etc. (Véase Figura 2, 3 y 4)



Figura 2 Reductor de Velocidad Cicloidal Magnético. Se muestra el corte transversal de la sección A-A [4].

Las variables asociadas al modelo y a sus partes se muestran en la Figura 1.4

Tabla 1. Notación de variables, literales y sus valores.

| Variables y<br>literales | Descripción                                                         |
|--------------------------|---------------------------------------------------------------------|
| n <sub>f</sub>           | Número de imanes totales en el engrane fijo.                        |
| n <sub>m</sub>           | Número de imanes totales en el engrane móvil.                       |
| $r_{f}$                  | Radio del engrane fijo.                                             |
| r <sub>m</sub>           | Radio del engrane móvil.                                            |
| $\theta_{mmD}$           | Ángulo del marco móvil $M_m$ respecto del marco fijo M <sub>0</sub> |
| $\theta_{_{bm}}$         | Ángulo del vector $r_b$ al marco móvil.                             |
| $\theta_{dir}$           | Ángulo del vector $r_e$ .                                           |
| $\theta_{a}$             | Ángulo del vector $r_{a}$ .                                         |
| $\theta_h$               | Ángulo del vector $\vec{r_h}$ .                                     |
| $\theta_{_{des}}$        | Ángulo deseado.                                                     |
| r <sub>b</sub>           | Vector del centro del engrane móvil al centro del agujero           |
| $\mathbf{r}_{e}, r_{e}$  | Vector excentricidad del $M_0$ al $M_m$ , y su escalar respectiva   |
|                          | mente.                                                              |
| r <sub>g</sub>           | Vector que empieza en el centro del perno hasta el centro           |
|                          | del agujero.                                                        |
| r <sub>h</sub>           | Vector que empieza en el $M_0$ hasta el centro del perno.           |
| $r_q$                    | Vector que empieza en el $M_0$ hasta el centro del agujero.         |
| $M^0$                    | Marco coordenado cero, que permanece fijo.                          |
| $M_m$                    | Marco coordenado del engrane móvil.                                 |
| t                        | Tiempo de muestreo en simulación cinemática.                        |
| Т                        | Unidad de tiempo total de la simulación.                            |
| $D_{c}$                  | Diámetro del perno.                                                 |
| $D_a$                    | Diámetro agujero.                                                   |
| î, ĵ, <i>k</i>           | Vectores unitarios asociados a los ejes coordenados carte           |
|                          | sianos x, y, z.                                                     |



Figura 3 Reductor de Velocidad Cicloidal Magnético, en la derecha se muestra el corte longitudinal a media sección [4].



Figura 4, Arriba: Diagrama Vectorial del Reductor de Velocidad Cicloidal Magnético. Abajo: Ampliación del polígono vectorial.

#### Modelado

El modelo cinemático directo de posición está resuelto en los siguientes párrafos. Este modelo sólo considera posiciones, velocidades y aceleraciones por lo cual el deslizamiento entre engranes debido al efecto magnético no se analiza en el modelo.

La ecuación (1) es necesaria para que los imanes de los engranes puedan coincidir. Se deduce con la condición en que

Edición digital

SEPTIEMBRE 2017, VOL. 6

26 Yong Primero F., Chicurel Uziel R.

la longitud de arco entre los imanes del engrane móvil sea la misma que la longitud de arco entre los imanes del engrane fijo.

$$r_m = \frac{r_f n_m}{n_f} \tag{1}$$

La ecuación (2) es para establecer la dimensión del diámetro del agujero.

$$D_a = D_c + 2r_e \tag{2}$$

El vector director  $r_e$  cuya orientación es  $\theta_{dir}$ , inicia en el origen de  $M_0$  y termina en el centro del engrane móvil; es dado por (3).

$$\mathbf{r}_{e} = r_{e} \cos(\theta_{dir}) \mathbf{i} + r_{e} \sin(\theta_{dir}) \mathbf{j}$$
(3)

 $\theta_{mmD}$  nos permite conocer el ángulo formado entre el marco del engrane móvil con respecto de  $M_0$ .

$$\theta_{mmD} = \theta_{dir} - \left(\frac{\theta_{dir}r_f}{r_m}\right) \tag{4}$$

$$\theta_{bm} = \theta_{mmD} \tag{5}$$

El vector  $r_{b}$ , inicia en el origen del marco móvil hacia el centro de cualquiera de los agujeros del engrane móvil.

$$\boldsymbol{r}_{\boldsymbol{b}} = \left(r_{b}\cos(\theta_{bm}) + r_{ex}\right)\hat{\boldsymbol{i}} + \left(r_{b}\sin(\theta_{bm}) + r_{ey}\right)\hat{\boldsymbol{j}}$$
(6)

Del diagrama de la Figura 1.4, se comprueba el triángulo de vectores descritos en (7).

$$\boldsymbol{r}_q = \boldsymbol{r}_e + \boldsymbol{r}_b \tag{7}$$

Teniendo en cuenta que  $r_e$  y  $r_b$  son de magnitud y dirección conocida, es posible resolver  $r_q$  y su dirección en (8), posteriormente se aplica el método de Chace para ecuaciones vectoriales planas y se soluciona  $r_h$  en las ecuaciones (9) y (10) ya que este vector es de magnitud conocida y dirección desconocida.

$$\theta_q = \arctan\left(\frac{r_{qy}}{r_{qx}}\right) \tag{8}$$

$$\boldsymbol{r}_{h} = \pm \sqrt{r_{h}^{2} - \left(\frac{r_{h}^{2} - r_{g}^{2} + r_{q}^{2}}{2r_{q}}\right)^{2}} \left(\hat{\boldsymbol{r}}_{q} \times \hat{\boldsymbol{k}}\right) + \left(\frac{r_{h}^{2} - r_{g}^{2} + r_{q}^{2}}{2r_{q}}\right)\hat{\boldsymbol{r}}_{q}$$
(9)

$$\theta_{h} = \arctan\left(\frac{r_{hy}}{r_{hx}}\right) \tag{10}$$

El modelo cinemático directo de velocidad está resuelto en los siguientes párrafos.

La velocidad angular del marco del engrane móvil con respecto de  $M_0$ , es resuelta en (11).

$$\dot{\theta}_{mmD} = \dot{\theta}_{dir} \left( 1 - \frac{r_f}{r_m} \right) \tag{11}$$

De (5) por simple inspección se tiene que

$$\dot{\theta}_{bmD} = \dot{\theta}_{mm\dot{D}} \tag{12}$$

La derivada del vector  $r_{e}$  es

$$\dot{\mathbf{r}}_{e} = \left(-r_{e} \operatorname{sen}(\theta_{dir})\dot{\theta}_{dir}\right)\hat{\mathbf{i}} + \left(r_{e} \cos(\theta_{dir})\dot{\theta}_{dir}\right)\hat{\mathbf{j}}$$
(13)

La derivada del vector  $r_b$  esta dada por

$$\dot{\mathbf{r}}_{b} = \left(-r_{b}\dot{\theta}_{bm}\operatorname{sen}\left(\theta_{bm}\right) + r_{ex}\right)\hat{\mathbf{i}} + \dots$$

$$\dots + \left(-r_{b}\theta_{bm}\cos\left(\theta_{bm}\right) + \dot{r}_{ey}\right)\hat{\mathbf{j}}.$$
(14)

De la triada vectorial  $\dot{r}_{e}$ ,  $\dot{r}_{b}$  y  $\dot{r}_{q}$  se tiene que

$$\dot{\mathbf{r}}_{q} = \dot{\mathbf{r}}_{e} + \dot{\mathbf{r}}_{b}, \tag{15}$$

por lo tanto

$$\dot{\mathbf{r}}_{q} = \left[\dot{\theta}_{dbr} r_{e} \left(\hat{\mathbf{k}} \times \hat{\mathbf{r}}_{e}\right)\right] - \left[r_{b} \dot{\theta}_{bm} \operatorname{sen} \theta_{bm} + \dot{\mathbf{r}}_{ex}\right] \hat{\mathbf{i}} - \dots \dots - \left[r_{b} \left(\theta_{bm}\right) \left(\operatorname{sen} \theta_{bm}\right) + \dot{\mathbf{r}}_{ey}\right] \hat{\mathbf{j}}.$$
(16)

Los vectores de velocidad  $\dot{r}_h$  y  $\dot{r}_g$  solo tienen desplazamiento angular  $\dot{\theta}_h$  y  $\dot{\theta}_g$  desconocidos pues su longitud es constante, estos vectores se pueden escribir de la siguiente forma:

$$\dot{\mathbf{r}}_{\mathbf{h}} = \dot{\boldsymbol{\theta}}_{\mathbf{h}} r_{\mathbf{h}} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{\mathbf{h}} \right), \tag{17}$$

$$\dot{\mathbf{r}}_{g} = \dot{\theta}_{g} r_{g} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{g} \right), \tag{18}$$

Resolviendo la triada vectorial  $\dot{r}_a$ ,  $\dot{r}_a$  y  $\dot{r}_b$  se tiene que

$$\dot{\mathbf{r}}_{q} = \dot{\mathbf{r}}_{g} + \dot{\mathbf{r}}_{h} \tag{19}$$

la ecuación (19) se reescribe sustituyendo (17) (18), y queda:

$$\dot{\mathbf{r}}_{q} = \dot{\theta}_{h} r_{h} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{h} \right) + \dot{\theta}_{g} r_{g} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{g} \right).$$
<sup>(20)</sup>

Para solucionar  $\dot{\theta}_{h}$ , la ecuación (20) se le aplica cancelación por ortogonalidad  $\hat{a} \cdot (\hat{k} \times \hat{a}) = 0$  al termino que contiene  $\dot{\theta}_{g}$ , queda:

$$\dot{\theta}_{h} = \frac{\hat{r}_{g} \cdot \dot{r}_{q}}{\hat{r}_{g} \cdot r_{h} \left(\hat{k} \times \hat{r}_{h}\right)}.$$
(21)

Y para solucionar  $\dot{\theta}_{g}$ , la ecuación (20) se le aplica cancelación por ortogonalidad  $\hat{a} \cdot (\hat{k} \times \hat{a}) = 0$  al término que contiene  $\dot{\theta}_{b}$ , queda:

INGENIERÍA MECÁNICA

$$\dot{\theta}_{g} = \frac{\hat{r}_{h} \cdot \dot{r}_{q}}{\hat{r}_{h} \cdot r_{g} \left( \hat{k} \times \hat{r}_{g} \right)}.$$
(22)

El modelo cinemático directo de aceleración está resuelto en los siguientes párrafos. La aceleración angular del marco del engrane móvil con respecto del  $M_{02}$  es:

$$\ddot{\theta}_{mmD} = \ddot{\theta}_{dir} \left( 1 - \frac{r_f}{r_m} \right)$$
(23)

de (5) y (12) se tiene que

$$\ddot{\theta}_{bmD} = \ddot{\theta}_{mmD} \tag{24}$$

La aceleración del vector  $r_{\rho}$  es

$$\dot{\mathbf{r}}_{e} = \left[ -r_{e} \mathrm{sen}\left(\theta_{dir}\right) \ddot{\theta}_{dir} - r_{e} \cos\left(\theta_{dir}\right) \dot{\theta}_{dir}^{2} \right] \hat{\mathbf{i}} + \dots$$

$$\dots + \left[ r_{e} \cos\left(\theta_{dir}\right) \ddot{\theta}_{dir} - r_{e} \mathrm{sen} \theta_{dir} \dot{\theta}_{dir}^{2} \right] \hat{\mathbf{j}},$$
(25)

la aceleración del vector  $r_{b}$  esta dada por

$$\ddot{\mathbf{r}}_{b} = \left(-r_{b}\theta_{bm}\operatorname{sen}\left(\theta_{bm}\right) - r_{b}\dot{\theta}_{bn}^{2}\cos\left(\theta_{bm}\right) + \ddot{r}_{ex}\right)\hat{\mathbf{i}} + \dots \dots + \left(+r_{b}\ddot{\theta}_{bm}\cos\left(\theta_{bm}\right) + r_{b}\dot{\theta}_{bm}^{2}\operatorname{sen}\left(\theta_{bm}\right) + \ddot{r}_{ey}\right)\hat{\mathbf{j}}.$$
(26)

De la triada vectorial  $\ddot{r}_{b}$ ,  $\ddot{r}_{e}$  y  $\ddot{r}_{q}$  se tiene que

$$\ddot{r}_q = \ddot{r}_e + \ddot{r}_b \tag{27}$$

por lo tanto

$$\ddot{\mathbf{r}}_{q} = \left[2 - r_{e} \operatorname{sen}\left(\theta_{dir}\right) \ddot{\theta}_{dir} - r_{e} \cos\left(\theta_{dir}\right) \dot{\theta}_{dir}^{2} - \dots \\ \dots - r_{b} \ddot{\theta}_{bm} \operatorname{sen}\left(\theta_{bm}\right) - r_{b} \dot{\theta}_{bm}^{2} \cos\left(\theta_{bm}\right) \right] \hat{\mathbf{i}} + \dots \\ \dots + \left[2 \left(r_{e} \cos\left(\theta_{dir}\right) \ddot{\theta}_{dir} - r_{e} \operatorname{sen}\left(\theta_{dir}\right) \dot{\theta}_{dir}^{2}\right) + \dots \\ \dots + r_{b} \ddot{\theta}_{bm} \cos\left(\theta_{bm}\right) + r_{b} \dot{\theta}_{bm}^{2} \operatorname{sen}\left(\theta_{bm}\right) \right] \hat{\mathbf{j}}.$$

$$(28)$$

Los vectores de aceleración  $\ddot{r}_h$  en ec. (29) y  $\ddot{r}_g$  en ec. (30) tienen su aceleración angular  $\ddot{\theta}_h$  y  $\ddot{\theta}_g$  desconocidas respectivamente,

$$\ddot{\mathbf{r}}_{h} = -\dot{\theta}_{h}^{2} \mathbf{r}_{h} \hat{\mathbf{r}}_{h} + \ddot{\theta}_{h} \mathbf{r}_{h} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{h} \right), \tag{29}$$

$$\ddot{\boldsymbol{r}}_{\boldsymbol{g}} = -\dot{\theta}_{g}^{2} \boldsymbol{r}_{g} \hat{\boldsymbol{r}}_{g} + \ddot{\theta}_{g} \boldsymbol{r}_{g} \left( \hat{\boldsymbol{k}} \times \hat{\boldsymbol{r}}_{g} \right), \tag{30}$$

De la triada vectorial  $\ddot{r}_{g}$ ,  $\ddot{r}_{h}$  y  $\ddot{r}_{g}$  se tiene que

$$\ddot{r}_q = \ddot{r}_h + \ddot{r}_g, \tag{31}$$

la ecuación (31) se reescribe sustituyendo (29) y (30), queda

$$\ddot{\mathbf{r}}_{q} = -\dot{\theta}_{h}^{2} r_{h} \hat{\mathbf{r}}_{h} + \ddot{\theta}_{h} r_{h} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{h} \right) - \dot{\theta}_{g}^{2} r_{g} \hat{\mathbf{r}}_{g} + \ddot{\theta}_{g} r_{g} \left( \hat{\mathbf{k}} \times \hat{\mathbf{r}}_{g} \right).$$
(32)

Se procede a resolver  $\ddot{\theta}_{h}$ , aplicando cancelación por ortogonalidad  $\hat{a} \cdot (\hat{k} \times \hat{a}) = 0$ , queda:

$$\ddot{\theta}_{h} = \frac{\hat{r}_{g} \cdot \left(\ddot{r}_{q} + \left(\dot{\theta}_{g}^{2} r_{g} \hat{r}_{g}\right) + \left(\dot{\theta}_{h}^{2} r_{h} \hat{r}_{h}\right)\right)}{\hat{r}_{g} \cdot \left(r_{h} \left(\hat{k} \times \hat{r}_{h}\right)\right)}.$$
(33)

Para a resolver  $\ddot{\theta}_{g}$ , aplicando cancelación por ortogonalidad  $\hat{a} \cdot (\hat{k} \times \hat{a}) = 0$ , queda:

$$\ddot{\theta}_{g} = \frac{\widehat{r}_{h} \cdot \left(\ddot{r}_{q} + \left(\dot{\theta}_{h}^{2} r_{h} \widehat{r}_{h}\right) + \left(\dot{\theta}_{g}^{2} r_{g} \widehat{r}_{g}\right)\right)}{\widehat{r}_{h} \cdot \left(r_{g} \left(\boldsymbol{k} \times \widehat{r}_{g}\right)\right)}$$
(34)

#### Simulación Cinemática

El modelo cinemático se comprobó con la siguiente formula (35) descrita en [5].

$$\frac{\dot{\theta}_{dir}}{\dot{\theta}_h} = 1 - \frac{n_f}{n_m} \tag{35}$$

A continuación se presentan los resultados de la simulación realizada en Matlab para validar el modelo cinemático.

La simulación comprende la trayectoria deseada del vector excentricidad y trayectoria de la flecha de salida.

La trayectoria deseada se define para el vector excentricidad, la trayectoria debe ser suave con el objetivo de mover el engrane móvil de una posición inicial a una posición final usando una trayectoria en estado transitorio [6]. Las ecuaciones que describen esta trayectoria son:

$$\theta_{dir} = \theta_{ini} + \theta_{des} \left( \frac{t}{T} - \frac{1}{2\pi} \operatorname{sen} \frac{2\pi t}{T} \right), \tag{36}$$

la función que corresponde a la velocidad

$$\dot{\theta}_{dir} = \frac{\theta_{des}}{T} \left( 1 + \cos \frac{2t\pi}{T} \right),\tag{37}$$

la función aceleración es

$$\ddot{\theta}_{dir} = \frac{2\theta_{des}\pi}{T^2} \operatorname{sen}\frac{2t\pi}{T}.$$
(38)

La forma de las funciones  $\theta_{dir}$  (36),  $\dot{\theta}_{dir}$  (37),  $\ddot{\theta}_{dir}$  (38), se puede apreciar en la gráfica de la Figura 5. Donde los valores utilizados en la simulación son  $n_f$ =54,  $n_m$ =52,  $r_m$ =78,  $r_e$ =6,  $r_g$ =14,  $r_h$ =50, t=200,  $\theta_{des}$ =4 $\pi$ ,  $\theta_{ini}$ =0 y T=1.

La cinemática depende de los valores de posición, velocidad y aceleración del eslabón director. De esta manera se pueden conocer las variables de posición, velocidad y aceleración de la flecha de salida. En la Figura 6 se comparan las trayectorias de salida que son resultado de la relación de la ecuación (35), la posición (10), velocidad (21) y aceleración (32) de la flecha de salida. Se aprecia que la relación de posición, velo-

SEPTIEMBRE 2017, VOL. 6

28 Yong Primero F., Chicurel Uziel R.

cidad y aceleración cumplen con la formula tradicionalmente conocida de los reductores cicloidales (35).



## Conclusión

En este artículo se presentó la formulación utilizada para resolver el modelo cinemático del reductor de velocidad magnético. Las longitudes utilizadas definen movimientos relativos naturales sin interferencias entre sus elementos. Este modelo permite simular los movimientos y observar la geometría. Lo anterior hace al modelo presentado en el artículo viable y valido para estudios geométricos.

En el marco de las actividades futuras, relativas al desarrollo del reductor de velocidad cicloidal magnético, se deberá efectuar análisis del comportamiento dinámico y optimización dimensional. Los estudios estarán orientados a desarrollar herramientas de diseño.

# Apéndice A. Derivada de un vector de posición.

De la forma general de la derivada respecto al tiempo de unvector de posicion R expresada en (39)

$$\dot{\boldsymbol{R}} = \dot{\boldsymbol{R}}\hat{\boldsymbol{R}} + \omega \boldsymbol{R}\left(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{R}}\right) \tag{39}$$

donde  $\hat{R}$  es la velocidad del vector R,  $\hat{R}$  es la magnitud de la velocidad lineal,  $\hat{R}$  es el vector unitario del vector R,  $\omega$ es la velocidad angular del vector R, R es la magnitud del vector R. Para vectores de longitud constante, R = 0, por lo que la derivada respecto al tiempo de un vector de posición  $\hat{R} = \omega R(\hat{k} \times \hat{R})$  [7].

# Agradecimientos

Se agradece al Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) de la Universidad Nacional Autonoma de México número IT101117, al Dr. Gabriel Ascanio, Ing. Omar Tenorio, Ing. Isaac López por su compañerismo y al Arq. Jenifer Rodríguez por su incansable participación para la realización del artículo.

# Referencias

- [1] G.A. Reese. *Magnetic Gear Arrangement*. US3301091, 2:24, 1967
- [2] K. Atallah and D. Howe, "A Novel High-Performance Magnetic Gear," IEEE Transactions on Magnetics, Vol. 37, No. 4, 2001, pp. 2844-2846. doi:10.1109/20.951324
- [3] T.; Joergensen F.T.; Nielsen O. Rasmussen, P.; Andersen. Development of a High-Performance Magnetic Gear. Industry Applications, IEEE, Mayo-Junio2005.
- [4] Ricardo Chicurel-Uziel. Cycliodal Magentic Gear Speed Reducer. Modern Mechanical Engineering. Published Online November 2013.
   3, 147-151.
- [5] Sandeep V. Thube, Todd R. Bobak. *The Dy-namic Simulation and Analisis of a Cycloi-dal Speed Reducer*. Proceedings of the 11th ASME International Power Transmission and Gearing Conference. Aug. 28-30, 2011 Washingotn, DC. USA.
- [6] Yong. F., Diseño y Control de un Exoesqueleto de Rodilla, Instituto Tecnológico de la Laguna. Tesis Maestría. 2012.
- [7] Shigley J. E., Uicker J.J., *Teoría de máquinas y Mecanismos*. Mc Graw Hill, (1988).